BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

495 related articles for article (PubMed ID: 23075985)

  • 21. Structure and mechanism of the lactose permease of Escherichia coli.
    Abramson J; Smirnova I; Kasho V; Verner G; Kaback HR; Iwata S
    Science; 2003 Aug; 301(5633):610-5. PubMed ID: 12893935
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identification of residues important for substrate uptake in a glucose transporter from the filamentous fungus Trichoderma reesei.
    Zhang W; Cao Y; Gong J; Bao X; Chen G; Liu W
    Sci Rep; 2015 Sep; 5():13829. PubMed ID: 26345619
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Metal-mediated crystallization of the xylose transporter XylE from Escherichia coli in three different crystal forms.
    Quistgaard EM; Löw C; Moberg P; Nordlund P
    J Struct Biol; 2013 Nov; 184(2):375-8. PubMed ID: 24060988
    [TBL] [Abstract][Full Text] [Related]  

  • 24. GLUT, SGLT, and SWEET: Structural and mechanistic investigations of the glucose transporters.
    Deng D; Yan N
    Protein Sci; 2016 Mar; 25(3):546-58. PubMed ID: 26650681
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Analysis of transmembrane segment 8 of the GLUT1 glucose transporter by cysteine-scanning mutagenesis and substituted cysteine accessibility.
    Mueckler M; Makepeace C
    J Biol Chem; 2004 Mar; 279(11):10494-9. PubMed ID: 14688257
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Implications of aberrant temperature-sensitive glucose transport via the glucose transporter deficiency mutant (GLUT1DS) T295M for the alternate-access and fixed-site transport models.
    Cunningham P; Naftalin RJ
    J Membr Biol; 2013 Jun; 246(6):495-511. PubMed ID: 23740044
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structure of D-allose binding protein from Escherichia coli bound to D-allose at 1.8 A resolution.
    Chaudhuri BN; Ko J; Park C; Jones TA; Mowbray SL
    J Mol Biol; 1999 Mar; 286(5):1519-31. PubMed ID: 10064713
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Asp
    Seica AFS; Iancu CV; Pfeilschifter B; Madej MG; Choe JY; Hellwig P
    J Biol Chem; 2020 Nov; 295(45):15253-15261. PubMed ID: 32859752
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mechanistic Study of Human Glucose Transport Mediated by GLUT1.
    Fu X; Zhang G; Liu R; Wei J; Zhang-Negrerie D; Jian X; Gao Q
    J Chem Inf Model; 2016 Mar; 56(3):517-26. PubMed ID: 26821218
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The molecular basis for sugar import in malaria parasites.
    Qureshi AA; Suades A; Matsuoka R; Brock J; McComas SE; Nji E; Orellana L; Claesson M; Delemotte L; Drew D
    Nature; 2020 Feb; 578(7794):321-325. PubMed ID: 31996846
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structural comparison of lactose permease and the glycerol-3-phosphate antiporter: members of the major facilitator superfamily.
    Abramson J; Kaback HR; Iwata S
    Curr Opin Struct Biol; 2004 Aug; 14(4):413-9. PubMed ID: 15313234
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transmembrane helix I and periplasmic loop 1 of Escherichia coli ProP are involved in osmosensing and osmoprotectant transport.
    Keates RA; Culham DE; Vernikovska YI; Zuiani AJ; Boggs JM; Wood JM
    Biochemistry; 2010 Oct; 49(41):8847-56. PubMed ID: 20828170
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Role of xylose transporters in xylitol production from engineered Escherichia coli.
    Khankal R; Chin JW; Cirino PC
    J Biotechnol; 2008 Apr; 134(3-4):246-52. PubMed ID: 18359531
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structural comparison of GLUT1 to GLUT3 reveal transport regulation mechanism in sugar porter family.
    Custódio TF; Paulsen PA; Frain KM; Pedersen BP
    Life Sci Alliance; 2021 Apr; 4(4):. PubMed ID: 33536238
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Crystal structure of the E. coli peptide transporter YbgH.
    Zhao Y; Mao G; Liu M; Zhang L; Wang X; Zhang XC
    Structure; 2014 Aug; 22(8):1152-1160. PubMed ID: 25066136
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structural basis for amino acid export by DMT superfamily transporter YddG.
    Tsuchiya H; Doki S; Takemoto M; Ikuta T; Higuchi T; Fukui K; Usuda Y; Tabuchi E; Nagatoishi S; Tsumoto K; Nishizawa T; Ito K; Dohmae N; Ishitani R; Nureki O
    Nature; 2016 Jun; 534(7607):417-20. PubMed ID: 27281193
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Conformational changes and ligand recognition of Escherichia coli D-xylose binding protein revealed.
    Sooriyaarachchi S; Ubhayasekera W; Park C; Mowbray SL
    J Mol Biol; 2010 Oct; 402(4):657-68. PubMed ID: 20678502
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Expression, purification, and structural insights for the human uric acid transporter, GLUT9, using the Xenopus laevis oocytes system.
    Clémençon B; Lüscher BP; Fine M; Baumann MU; Surbek DV; Bonny O; Hediger MA
    PLoS One; 2014; 9(10):e108852. PubMed ID: 25286413
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sequence determinants of GLUT1-mediated accelerated-exchange transport: analysis by homology-scanning mutagenesis.
    Vollers SS; Carruthers A
    J Biol Chem; 2012 Dec; 287(51):42533-44. PubMed ID: 23093404
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Major facilitator superfamily porters, LacY, FucP and XylE of Escherichia coli appear to have evolved positionally dissimilar catalytic residues without rearrangement of 3-TMS repeat units.
    Västermark A; Lunt B; Saier M
    J Mol Microbiol Biotechnol; 2014; 24(2):82-90. PubMed ID: 24603210
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.