These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 23076326)
1. Tuning the metal binding site specificity of a fluorescent sensor protein: from copper to zinc and back. Koay MS; Janssen BM; Merkx M Dalton Trans; 2013 Mar; 42(9):3230-2. PubMed ID: 23076326 [TBL] [Abstract][Full Text] [Related]
2. T versus D in the MTCXXC motif of copper transport proteins plays a role in directional metal transport. Niemiec MS; Dingeldein AP; Wittung-Stafshede P J Biol Inorg Chem; 2014 Aug; 19(6):1037-47. PubMed ID: 24824562 [TBL] [Abstract][Full Text] [Related]
3. Crystal Structure of the Human Copper Chaperone ATOX1 Bound to Zinc Ion. Mangini V; Belviso BD; Nardella MI; Natile G; Arnesano F; Caliandro R Biomolecules; 2022 Oct; 12(10):. PubMed ID: 36291703 [TBL] [Abstract][Full Text] [Related]
4. Determinants for simultaneous binding of copper and platinum to human chaperone Atox1: hitchhiking not hijacking. Palm-Espling ME; Andersson CD; Björn E; Linusson A; Wittung-Stafshede P PLoS One; 2013; 8(7):e70473. PubMed ID: 23936210 [TBL] [Abstract][Full Text] [Related]
5. Peptide models of Cu(I) and Zn(II) metallochaperones: the effect of pH on coordination and mechanistic implications. Shoshan MS; Shalev DE; Tshuva EY Inorg Chem; 2013 Mar; 52(6):2993-3000. PubMed ID: 23458158 [TBL] [Abstract][Full Text] [Related]
6. The structural flexibility of the human copper chaperone Atox1: Insights from combined pulsed EPR studies and computations. Levy AR; Turgeman M; Gevorkyan-Aiapetov L; Ruthstein S Protein Sci; 2017 Aug; 26(8):1609-1618. PubMed ID: 28543811 [TBL] [Abstract][Full Text] [Related]
7. The metal chaperone Atox1 regulates the activity of the human copper transporter ATP7B by modulating domain dynamics. Yu CH; Yang N; Bothe J; Tonelli M; Nokhrin S; Dolgova NV; Braiterman L; Lutsenko S; Dmitriev OY J Biol Chem; 2017 Nov; 292(44):18169-18177. PubMed ID: 28900031 [TBL] [Abstract][Full Text] [Related]
8. Oxaliplatin Binding to Human Copper Chaperone Atox1 and Protein Dimerization. Belviso BD; Galliani A; Lasorsa A; Mirabelli V; Caliandro R; Arnesano F; Natile G Inorg Chem; 2016 Jul; 55(13):6563-73. PubMed ID: 27305454 [TBL] [Abstract][Full Text] [Related]
9. Identification of New Potential Interaction Partners for Human Cytoplasmic Copper Chaperone Atox1: Roles in Gene Regulation? Öhrvik H; Wittung-Stafshede P Int J Mol Sci; 2015 Jul; 16(8):16728-39. PubMed ID: 26213915 [TBL] [Abstract][Full Text] [Related]
10. Ratiometric fluorescent sensor proteins with subnanomolar affinity for Zn(II) based on copper chaperone domains. van Dongen EM; Dekkers LM; Spijker K; Meijer EW; Klomp LW; Merkx M J Am Chem Soc; 2006 Aug; 128(33):10754-62. PubMed ID: 16910670 [TBL] [Abstract][Full Text] [Related]
11. Redox sulfur chemistry of the copper chaperone Atox1 is regulated by the enzyme glutaredoxin 1, the reduction potential of the glutathione couple GSSG/2GSH and the availability of Cu(I). Brose J; La Fontaine S; Wedd AG; Xiao Z Metallomics; 2014 Apr; 6(4):793-808. PubMed ID: 24522867 [TBL] [Abstract][Full Text] [Related]
12. The C-Terminus of Human Copper Importer Ctr1 Acts as a Binding Site and Transfers Copper to Atox1. Kahra D; Kovermann M; Wittung-Stafshede P Biophys J; 2016 Jan; 110(1):95-102. PubMed ID: 26745413 [TBL] [Abstract][Full Text] [Related]
13. Human Copper Chaperone Atox1 Translocates to the Nucleus but does not Bind DNA In Vitro. Kahra D; Mondol T; Niemiec MS; Wittung-Stafshede P Protein Pept Lett; 2015; 22(6):532-8. PubMed ID: 25962064 [TBL] [Abstract][Full Text] [Related]
14. Combinatorial Therapy of Zinc Metallochaperones with Mutant p53 Reactivation and Diminished Copper Binding. Zaman S; Yu X; Bencivenga AF; Blanden AR; Liu Y; Withers T; Na B; Blayney AJ; Gilleran J; Boothman DA; Loh SN; Kimball SD; Carpizo DR Mol Cancer Ther; 2019 Aug; 18(8):1355-1365. PubMed ID: 31196889 [TBL] [Abstract][Full Text] [Related]
15. Copper binding modulates the platination of human copper chaperone Atox1 by antitumor trans-platinum complexes. Xi Z; Guo W; Tian C; Wang F; Liu Y Metallomics; 2014 Mar; 6(3):491-7. PubMed ID: 24469739 [TBL] [Abstract][Full Text] [Related]
16. Metal binding affinities of Arabidopsis zinc and copper transporters: selectivities match the relative, but not the absolute, affinities of their amino-terminal domains. Zimmermann M; Clarke O; Gulbis JM; Keizer DW; Jarvis RS; Cobbett CS; Hinds MG; Xiao Z; Wedd AG Biochemistry; 2009 Dec; 48(49):11640-54. PubMed ID: 19883117 [TBL] [Abstract][Full Text] [Related]
17. Insight into the cation-π interaction at the metal binding site of the copper metallochaperone CusF. Chakravorty DK; Wang B; Ucisik MN; Merz KM J Am Chem Soc; 2011 Dec; 133(48):19330-3. PubMed ID: 22029374 [TBL] [Abstract][Full Text] [Related]
18. Binding of Copper and Cisplatin to Atox1 Is Mediated by Glutathione through the Formation of Metal-Sulfur Clusters. Dolgova NV; Yu C; Cvitkovic JP; Hodak M; Nienaber KH; Summers KL; Cotelesage JJH; Bernholc J; Kaminski GA; Pickering IJ; George GN; Dmitriev OY Biochemistry; 2017 Jun; 56(24):3129-3141. PubMed ID: 28549213 [TBL] [Abstract][Full Text] [Related]
19. Mechanistic Insights into the Metal-Dependent Activation of Zn Jordan MR; Wang J; Weiss A; Skaar EP; Capdevila DA; Giedroc DP Inorg Chem; 2019 Oct; 58(20):13661-13672. PubMed ID: 31247880 [TBL] [Abstract][Full Text] [Related]