These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 23076571)

  • 21. Leaching heavy metals in municipal solid waste incinerator fly ash with chelator/biosurfactant mixed solution.
    Xu Y; Chen Y
    Waste Manag Res; 2015 Jul; 33(7):652-61. PubMed ID: 26185165
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Leaching characteristics of lead from melting furnace fly ash generated by melting of incineration fly ash.
    Okada T; Tomikawa H
    J Environ Manage; 2012 Nov; 110():207-14. PubMed ID: 22789656
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Removal of chromium (VI) ions from aqueous solution by adsorption onto two marine isolates of Yarrowia lipolytica.
    Bankar AV; Kumar AR; Zinjarde SS
    J Hazard Mater; 2009 Oct; 170(1):487-94. PubMed ID: 19467781
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fly ash-brine interactions: removal of major and trace elements from brine.
    Fatoba OO; Petrik LF; Gitari WM; Iwuoha EI
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2011; 46(14):1648-66. PubMed ID: 22126135
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization of metals released from coal fly ash during dredging at the Kingston ash recovery project.
    Bednar AJ; Averett DE; Seiter JM; Lafferty B; Jones WT; Hayes CA; Chappell MA; Clarke JU; Steevens JA
    Chemosphere; 2013 Sep; 92(11):1563-70. PubMed ID: 23706374
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Studies on synthesis and characteristics of zeolite prepared from Indian fly ash.
    Prasad B; Maity S; Sangita K; Mahato AK; Mortimer RJ
    Environ Technol; 2012; 33(1-3):37-50. PubMed ID: 22519086
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Managing metolachlor and atrazine leaching losses using lignite fly ash.
    Ghosh RK; Singh N
    Ecotoxicol Environ Saf; 2012 Oct; 84():243-8. PubMed ID: 22854744
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nano-mineralogical investigation of coal and fly ashes from coal-based captive power plant (India): an introduction of occupational health hazards.
    Oliveira ML; Marostega F; Taffarel SR; Saikia BK; Waanders FB; DaBoit K; Baruah BP; Silva LF
    Sci Total Environ; 2014 Jan; 468-469():1128-37. PubMed ID: 24121564
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Metal release and speciation changes during wet aging of coal fly ashes.
    Catalano JG; Huhmann BL; Luo Y; Mitnick EH; Slavney A; Giammar DE
    Environ Sci Technol; 2012 Nov; 46(21):11804-12. PubMed ID: 23035817
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Induced phytoremediation of metals from fly ash mediated by plant growth promoting rhizobacteria.
    Tiwari S; Singh SN; Garg SK
    J Environ Biol; 2013 Jul; 34(4):717-27. PubMed ID: 24640248
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Leaching of valuable elements from thermal power plant bottom ash using a thermo-hydrometallurgical process.
    Bojinova D; Teodosieva R
    Waste Manag Res; 2016 Jun; 34(6):511-7. PubMed ID: 26951342
    [TBL] [Abstract][Full Text] [Related]  

  • 32. SEM/EDS and XRD characterization of raw and washed MSWI fly ash sintered at different temperatures.
    Liu Y; Zheng L; Li X; Xie S
    J Hazard Mater; 2009 Feb; 162(1):161-73. PubMed ID: 18555594
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Alkaline bioleaching of municipal solid waste incineration fly ash by autochthonous extremophiles.
    Ramanathan T; Ting YP
    Chemosphere; 2016 Oct; 160():54-61. PubMed ID: 27362528
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bioleaching of metal from municipal waste incineration fly ash using a mixed culture of sulfur-oxidizing and iron-oxidizing bacteria.
    Ishigaki T; Nakanishi A; Tateda M; Ike M; Fujita M
    Chemosphere; 2005 Aug; 60(8):1087-94. PubMed ID: 15993156
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of water-extraction on characteristics of melting and solidification of fly ash from municipal solid waste incinerator.
    Jiang Y; Xi B; Li X; Zhang L; Wei Z
    J Hazard Mater; 2009 Jan; 161(2-3):871-7. PubMed ID: 18495335
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Growth of a tropical marine yeast Yarrowia lipolytica NCIM 3589 on bromoalkanes: relevance of cell size and cell surface properties.
    Vatsal A; Zinjarde SS; Kumar AR
    Yeast; 2011 Oct; 28(10):721-32. PubMed ID: 21905092
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Heavy metal tolerance in marine strains of Yarrowia lipolytica.
    Bankar A; Zinjarde S; Shinde M; Gopalghare G; Ravikumar A
    Extremophiles; 2018 Jul; 22(4):617-628. PubMed ID: 29594464
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Solidification/stabilization of fly and bottom ash from medical waste incineration facility.
    Anastasiadou K; Christopoulos K; Mousios E; Gidarakos E
    J Hazard Mater; 2012 Mar; 207-208():165-70. PubMed ID: 21784578
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Investigations of sequential leaching behaviour of Cu and Zn from coal fly ash and their mobility in environmental conditions.
    Soco E; Kalembkiewicz J
    J Hazard Mater; 2007 Jul; 145(3):482-7. PubMed ID: 17194534
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evaluation of interactions between soil and coal fly ash leachates using column percolation tests.
    Tsiridis V; Petala M; Samaras P; Sakellaropoulos GP
    Waste Manag; 2015 Sep; 43():255-63. PubMed ID: 26087643
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.