These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 2307682)

  • 1. DNA damage promotes jumping between templates during enzymatic amplification.
    Pääbo S; Irwin DM; Wilson AC
    J Biol Chem; 1990 Mar; 265(8):4718-21. PubMed ID: 2307682
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detection of specific polymerase chain reaction product by utilizing the 5'----3' exonuclease activity of Thermus aquaticus DNA polymerase.
    Holland PM; Abramson RD; Watson R; Gelfand DH
    Proc Natl Acad Sci U S A; 1991 Aug; 88(16):7276-80. PubMed ID: 1871133
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase.
    Saiki RK; Gelfand DH; Stoffel S; Scharf SJ; Higuchi R; Horn GT; Mullis KB; Erlich HA
    Science; 1988 Jan; 239(4839):487-91. PubMed ID: 2448875
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct sequencing of bacteriophage T4 DNA with a thermostable DNA polymerase.
    Kricker MC; Tindall KR
    Gene; 1989 Dec; 85(1):199-204. PubMed ID: 2620832
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Escherichia coli exonuclease III enhances long PCR amplification of damaged DNA templates.
    Fromenty B; Demeilliers C; Mansouri A; Pessayre D
    Nucleic Acids Res; 2000 Jun; 28(11):E50. PubMed ID: 10871349
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid and reliable protocol for direct sequencing of material amplified by the polymerase chain reaction.
    Kusukawa N; Uemori T; Asada K; Kato I
    Biotechniques; 1990 Jul; 9(1):66-8, 70, 72. PubMed ID: 2393575
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of temperature and oligonucleotide primer length on the specificity and efficiency of amplification by the polymerase chain reaction.
    Wu DY; Ugozzoli L; Pal BK; Qian J; Wallace RB
    DNA Cell Biol; 1991 Apr; 10(3):233-8. PubMed ID: 2012681
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Template secondary structure can increase the error frequency of the DNA polymerase from Thermus aquaticus.
    Loewen PC; Switala J
    Gene; 1995 Oct; 164(1):59-63. PubMed ID: 7590322
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heterogeneity of primer extension products in asymmetric PCR is due both to cleavage by a structure-specific exo/endonuclease activity of DNA polymerases and to premature stops.
    Tombline G; Bellizzi D; Sgaramella V
    Proc Natl Acad Sci U S A; 1996 Apr; 93(7):2724-8. PubMed ID: 8610108
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An assessment of optimal conditions for amplification of HIV cDNA using Thermus aquaticus polymerase.
    Carman WF; Kidd AH
    J Virol Methods; 1989 Mar; 23(3):277-89. PubMed ID: 2541153
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Template secondary structure promotes polymerase jumping during PCR amplification.
    Viswanathan VK; Krcmarik K; Cianciotto NP
    Biotechniques; 1999 Sep; 27(3):508-11. PubMed ID: 10489610
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DNA sequencing with Thermus aquaticus DNA polymerase and direct sequencing of polymerase chain reaction-amplified DNA.
    Innis MA; Myambo KB; Gelfand DH; Brow MA
    Proc Natl Acad Sci U S A; 1988 Dec; 85(24):9436-40. PubMed ID: 3200828
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ancient DNA: extraction, characterization, molecular cloning, and enzymatic amplification.
    Pääbo S
    Proc Natl Acad Sci U S A; 1989 Mar; 86(6):1939-43. PubMed ID: 2928314
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RNA template-dependent 5' nuclease activity of Thermus aquaticus and Thermus thermophilus DNA polymerases.
    Ma WP; Kaiser MW; Lyamicheva N; Schaefer JJ; Allawi HT; Takova T; Neri BP; Lyamichev VI
    J Biol Chem; 2000 Aug; 275(32):24693-700. PubMed ID: 10827184
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct exponential amplification and sequencing (DEXAS) of genomic DNA.
    Kilger C; Pääbo S
    Biol Chem; 1997 Feb; 378(2):99-105. PubMed ID: 9088538
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimization of asymmetric polymerase chain reaction for rapid fluorescent DNA sequencing.
    Wilson RK; Chen C; Hood L
    Biotechniques; 1990 Feb; 8(2):184-9. PubMed ID: 2317375
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A general method of site-specific mutagenesis using a modification of the Thermus aquaticus polymerase chain reaction.
    Nelson RM; Long GL
    Anal Biochem; 1989 Jul; 180(1):147-51. PubMed ID: 2530914
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular breeding of polymerases for amplification of ancient DNA.
    d'Abbadie M; Hofreiter M; Vaisman A; Loakes D; Gasparutto D; Cadet J; Woodgate R; Pääbo S; Holliger P
    Nat Biotechnol; 2007 Aug; 25(8):939-43. PubMed ID: 17632524
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A rapid polymerase-chain-reaction-directed sequencing strategy using a thermostable DNA polymerase from Thermus flavus.
    Rao VB; Saunders NB
    Gene; 1992 Apr; 113(1):17-23. PubMed ID: 1563631
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amplification of DNA sequences of Epstein-Barr and human immunodeficiency viruses using DNA-polymerase from Thermus thermophilus.
    Glukhov AI; Gordeev SA; Vinogradov SV; Kiselev VI; Kramarov VM; Kiselev OI; Severin ES
    Mol Cell Probes; 1990 Dec; 4(6):435-43. PubMed ID: 1965009
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.