BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 23076826)

  • 1. Modular assembly of a Pd catalyst within a DNA scaffold for the amplified colorimetric and fluorimetric detection of nucleic acids.
    Prusty DK; Kwak M; Wildeman J; Herrmann A
    Angew Chem Int Ed Engl; 2012 Nov; 51(47):11894-8. PubMed ID: 23076826
    [No Abstract]   [Full Text] [Related]  

  • 2. Target-catalyzed autonomous assembly of dendrimer-like DNA nanostructures for enzyme-free and signal amplified colorimetric nucleic acids detection.
    He H; Dai J; Duan Z; Meng Y; Zhou C; Long Y; Zheng B; Du J; Guo Y; Xiao D
    Biosens Bioelectron; 2016 Dec; 86():985-989. PubMed ID: 27498325
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-assembly of DNA nanoparticles through multiple catalyzed hairpin assembly for enzyme-free nucleic acid amplified detection.
    He H; Dai J; Meng Y; Duan Z; Zhou C; Zheng B; Du J; Guo Y; Xiao D
    Talanta; 2018 Mar; 179():641-645. PubMed ID: 29310288
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Universal and label-free photosensitization colorimetric assays enabled by target-induced termini transformation of dsDNA resistant to Exo III digestion.
    Li X; Gao L; Li F; Hou X; Wu P
    Chem Commun (Camb); 2019 Jun; 55(50):7211-7214. PubMed ID: 31165808
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Colorimetric and Fluorimetric DNA Detection with a Hydroxystyryl-Quinolizinium Photoacid and Its Application for Cell Imaging.
    Das AK; Druzhinin SI; Ihmels H; Müller M; Schönherr H
    Chemistry; 2019 Oct; 25(55):12703-12707. PubMed ID: 31418956
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enzyme-based colorimetric detection of nucleic acids using peptide nucleic acid-immobilized microwell plates.
    Su X; Teh HF; Lieu X; Gao Z
    Anal Chem; 2007 Sep; 79(18):7192-7. PubMed ID: 17708676
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Colorimetric and fluorometric detection of nucleic acids using cationic polythiophene derivatives.
    Ho HA; Boissinot M; Bergeron MG; Corbeil G; Doré K; Boudreau D; Leclerc M
    Angew Chem Int Ed Engl; 2002 May; 41(9):1548-51. PubMed ID: 19750661
    [No Abstract]   [Full Text] [Related]  

  • 8. Label-free colorimetric detection of nucleic acids based on target-induced shielding against the peroxidase-mimicking activity of magnetic nanoparticles.
    Park KS; Kim MI; Cho DY; Park HG
    Small; 2011 Jun; 7(11):1521-5. PubMed ID: 21456097
    [No Abstract]   [Full Text] [Related]  

  • 9. Optical sensors based on hybrid DNA/conjugated polymer complexes.
    Ho HA; Béra-Abérem M; Leclerc M
    Chemistry; 2005 Mar; 11(6):1718-24. PubMed ID: 15565742
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pd nanowires as new biosensing materials for magnified fluorescent detection of nucleic acid.
    Zhang L; Guo S; Dong S; Wang E
    Anal Chem; 2012 Apr; 84(8):3568-73. PubMed ID: 22420689
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cooperative multicomponent self-assembly of nucleic acid structures for the activation of DNAzyme cascades: a paradigm for DNA sensors and aptasensors.
    Elbaz J; Moshe M; Shlyahovsky B; Willner I
    Chemistry; 2009; 15(14):3411-8. PubMed ID: 19206117
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rational, modular adaptation of enzyme-free DNA circuits to multiple detection methods.
    Li B; Ellington AD; Chen X
    Nucleic Acids Res; 2011 Sep; 39(16):e110. PubMed ID: 21693555
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Amplified detection of nucleic acid by G-quadruplex based hybridization chain reaction.
    Dong J; Cui X; Deng Y; Tang Z
    Biosens Bioelectron; 2012; 38(1):258-63. PubMed ID: 22739472
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel Catalyst System for Suzuki-Miyaura Coupling of Challenging DNA-Linked Aryl Chlorides.
    Ding Y; DeLorey JL; Clark MA
    Bioconjug Chem; 2016 Nov; 27(11):2597-2600. PubMed ID: 27704784
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Palladium-catalyzed H-D exchange into nucleic acids in deuterium oxide.
    Sajiki H; Aoki F; Esaki H; Maegawa T; Hirota K
    Nucleic Acids Res Suppl; 2003; (3):55-6. PubMed ID: 14510377
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Label-free visual detection of nucleic acids in biological samples with single-base mismatch detection capability.
    Song Y; Zhang W; An Y; Cui L; Yu C; Zhu Z; Yang CJ
    Chem Commun (Camb); 2012 Jan; 48(4):576-8. PubMed ID: 22064830
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid.
    BURTON K
    Biochem J; 1956 Feb; 62(2):315-23. PubMed ID: 13293190
    [No Abstract]   [Full Text] [Related]  

  • 18. Probing nucleic acid structure with shape-selective rhodium and ruthenium complexes.
    Jackson BA; Barton JK
    Curr Protoc Nucleic Acid Chem; 2001 May; Chapter 6():Unit 6.2. PubMed ID: 18428863
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A colorimetric and ratiometric fluorescent probe for palladium.
    Jiang J; Jiang H; Liu W; Tang X; Zhou X; Liu W; Liu R
    Org Lett; 2011 Sep; 13(18):4922-5. PubMed ID: 21863794
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A sensitive colorimetric assay system for nucleic acid detection based on isothermal signal amplification technology.
    Hu B; Guo J; Xu Y; Wei H; Zhao G; Guan Y
    Anal Bioanal Chem; 2017 Aug; 409(20):4819-4825. PubMed ID: 28689323
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.