BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 23076872)

  • 21. TRPV1 enhances cholecystokinin signaling in primary vagal afferent neurons and mediates the central effects on spontaneous glutamate release in the NTS.
    Arnold RA; Fowler DK; Peters JH
    Am J Physiol Cell Physiol; 2024 Jan; 326(1):C112-C124. PubMed ID: 38047304
    [TBL] [Abstract][Full Text] [Related]  

  • 22. 5-HT
    Fawley JA; Doyle MW; Andresen MC
    Brain Res; 2019 Oct; 1721():146346. PubMed ID: 31348913
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Localization of TRPV1 and P2X3 in unmyelinated and myelinated vagal afferents in the rat.
    Hermes SM; Andresen MC; Aicher SA
    J Chem Neuroanat; 2016 Mar; 72():1-7. PubMed ID: 26706222
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Vanilloid receptors presynaptically modulate cranial visceral afferent synaptic transmission in nucleus tractus solitarius.
    Doyle MW; Bailey TW; Jin YH; Andresen MC
    J Neurosci; 2002 Sep; 22(18):8222-9. PubMed ID: 12223576
    [TBL] [Abstract][Full Text] [Related]  

  • 25. TRPM3 expression and control of glutamate release from primary vagal afferent neurons.
    Ragozzino FJ; Arnold RA; Fenwick AJ; Riley TP; Lindberg JEM; Peterson B; Peters JH
    J Neurophysiol; 2021 Jan; 125(1):199-210. PubMed ID: 33296617
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Corticosterone inhibits vagal afferent glutamate release in the nucleus of the solitary tract via retrograde endocannabinoid signaling.
    Ragozzino FJ; Arnold RA; Kowalski CW; Savenkova MI; Karatsoreos IN; Peters JH
    Am J Physiol Cell Physiol; 2020 Dec; 319(6):C1097-C1106. PubMed ID: 32966126
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Trpv1 mediates spontaneous firing and heat sensitization of cutaneous primary afferents after plantar incision.
    Banik RK; Brennan TJ
    Pain; 2009 Jan; 141(1-2):41-51. PubMed ID: 19010598
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Oxytocin enhances cranial visceral afferent synaptic transmission to the solitary tract nucleus.
    Peters JH; McDougall SJ; Kellett DO; Jordan D; Llewellyn-Smith IJ; Andresen MC
    J Neurosci; 2008 Nov; 28(45):11731-40. PubMed ID: 18987209
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Vanilloid-sensitive afferents activate neurons with prominent A-type potassium currents in nucleus tractus solitarius.
    Bailey TW; Jin YH; Doyle MW; Andresen MC
    J Neurosci; 2002 Sep; 22(18):8230-7. PubMed ID: 12223577
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Understanding diverse TRPV1 signaling - an update.
    Andresen MC
    F1000Res; 2019; 8():. PubMed ID: 31824648
    [TBL] [Abstract][Full Text] [Related]  

  • 31. TRPV1 channels contribute to spontaneous glutamate release in nucleus tractus solitarii following chronic intermittent hypoxia.
    Kline DD; Wang S; Kunze DL
    J Neurophysiol; 2019 Mar; 121(3):881-892. PubMed ID: 30601692
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Intrinsic and synaptic long-term depression of NTS relay of nociceptin- and capsaicin-sensitive cardiopulmonary afferents hyperactivity.
    Bantikyan A; Song G; Feinberg-Zadek P; Poon CS
    Pflugers Arch; 2009 Mar; 457(5):1147-59. PubMed ID: 18704488
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Kv2 channels contribute to neuronal activity within the vagal afferent-nTS reflex arc.
    Ramirez-Navarro A; Lima-Silveira L; Glazebrook PA; Dantzler HA; Kline DD; Kunze DL
    Am J Physiol Cell Physiol; 2024 Jan; 326(1):C74-C88. PubMed ID: 37982174
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mechanisms of prolonged presynaptic Ca2+ signaling and glutamate release induced by TRPV1 activation in rat sensory neurons.
    Medvedeva YV; Kim MS; Usachev YM
    J Neurosci; 2008 May; 28(20):5295-311. PubMed ID: 18480286
    [TBL] [Abstract][Full Text] [Related]  

  • 35. KCa1.1 is potential marker for distinguishing Ah-type baroreceptor neurons in NTS and contributes to sex-specific presynaptic neurotransmission in baroreflex afferent pathway.
    Zhang YY; Yan ZY; Qu MY; Guo XJ; Li G; Lu XL; Liu Y; Ban T; Sun HL; Qiao GF; Li BY
    Neurosci Lett; 2015 Sep; 604():1-6. PubMed ID: 26219983
    [TBL] [Abstract][Full Text] [Related]  

  • 36. TRPV1 and synaptic transmission.
    Matta JA; Ahern GP
    Curr Pharm Biotechnol; 2011 Jan; 12(1):95-101. PubMed ID: 20932254
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sensory afferent neurotransmission in caudal nucleus tractus solitarius--common denominators.
    Andresen MC; Mendelowitz D
    Chem Senses; 1996 Jun; 21(3):387-95. PubMed ID: 8670718
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Chemosensitivity of unmyelinated axons in isolated human gastric vagus nerve.
    Lang PM; Grafe P
    Auton Neurosci; 2007 Oct; 136(1-2):100-4. PubMed ID: 17543588
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cranial afferent glutamate heterosynaptically modulates GABA release onto second-order neurons via distinctly segregated metabotropic glutamate receptors.
    Jin YH; Bailey TW; Andresen MC
    J Neurosci; 2004 Oct; 24(42):9332-40. PubMed ID: 15496669
    [TBL] [Abstract][Full Text] [Related]  

  • 40. KCa1.1 channel contributes to cell excitability in unmyelinated but not myelinated rat vagal afferents.
    Li BY; Glazebrook P; Kunze DL; Schild JH
    Am J Physiol Cell Physiol; 2011 Jun; 300(6):C1393-403. PubMed ID: 21325638
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.