These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 2307705)

  • 1. Nucleus-specific translation and assembly of acetylcholinesterase in multinucleated muscle cells.
    Rotundo RL
    J Cell Biol; 1990 Mar; 110(3):715-9. PubMed ID: 2307705
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cell surface acetylcholinesterase molecules on multinucleated myotubes are clustered over the nucleus of origin.
    Rossi SG; Rotundo RL
    J Cell Biol; 1992 Dec; 119(6):1657-67. PubMed ID: 1469054
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Local control of acetylcholinesterase gene expression in multinucleated skeletal muscle fibers: individual nuclei respond to signals from the overlying plasma membrane.
    Rossi SG; Vazquez AE; Rotundo RL
    J Neurosci; 2000 Feb; 20(3):919-28. PubMed ID: 10648696
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biogenesis of acetylcholinesterase molecular forms in muscle. Evidence for a rapidly turning over, catalytically inactive precursor pool.
    Rotundo RL
    J Biol Chem; 1988 Dec; 263(36):19398-406. PubMed ID: 3198632
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of acetylcholinesterase synthesis and assembly by muscle activity. Effects of tetrodotoxin.
    Fernandez-Valle C; Rotundo RL
    J Biol Chem; 1989 Aug; 264(24):14043-9. PubMed ID: 2760056
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Allelic variants of acetylcholinesterase: genetic evidence that all acetylcholinesterase forms in avian nerves and muscles are encoded by a single gene.
    Rotundo RL; Gomez AM; Fernandez-Valle C; Randall WR
    Proc Natl Acad Sci U S A; 1988 Oct; 85(20):7805-9. PubMed ID: 3174665
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Targeting acetylcholinesterase to the neuromuscular synapse.
    Rotundo RL; Rossi SG; Kimbell LM; Ruiz C; Marrero E
    Chem Biol Interact; 2005 Dec; 157-158():15-21. PubMed ID: 16289417
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Compartmentalization of acetylcholinesterase mRNA and enzyme at the vertebrate neuromuscular junction.
    Jasmin BJ; Lee RK; Rotundo RL
    Neuron; 1993 Sep; 11(3):467-77. PubMed ID: 8398140
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Limiting role of protein disulfide isomerase in the expression of collagen-tailed acetylcholinesterase forms in muscle.
    Ruiz CA; Rotundo RL
    J Biol Chem; 2009 Nov; 284(46):31753-63. PubMed ID: 19758986
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dissociation of transcription, translation, and assembly of collagen-tailed acetylcholinesterase in skeletal muscle.
    Ruiz CA; Rotundo RL
    J Biol Chem; 2009 Aug; 284(32):21488-95. PubMed ID: 19509281
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Translational regulation of acetylcholinesterase by the RNA-binding protein Pumilio-2 at the neuromuscular synapse.
    Marrero E; Rossi SG; Darr A; Tsoulfas P; Rotundo RL
    J Biol Chem; 2011 Oct; 286(42):36492-9. PubMed ID: 21865157
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Localization of "non-extractable" acetylcholinesterase to the vertebrate neuromuscular junction.
    Rossi SG; Rotundo RL
    J Biol Chem; 1993 Sep; 268(25):19152-9. PubMed ID: 8360197
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Globular and asymmetric acetylcholinesterase in the synaptic basal lamina of skeletal muscle.
    Anglister L; Haesaert B; McMahan UJ
    J Cell Biol; 1994 Apr; 125(1):183-96. PubMed ID: 8138570
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rescue and Stabilization of Acetylcholinesterase in Skeletal Muscle by N-terminal Peptides Derived from the Noncatalytic Subunits.
    Ruiz CA; Rossi SG; Rotundo RL
    J Biol Chem; 2015 Aug; 290(34):20774-20781. PubMed ID: 26139603
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acetylcholinesterase biosynthesis and transport in tissue culture.
    Rotundo RL
    Methods Enzymol; 1983; 96():353-67. PubMed ID: 6361457
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Basal lamina directs acetylcholinesterase accumulation at synaptic sites in regenerating muscle.
    Anglister L; McMahan UJ
    J Cell Biol; 1985 Sep; 101(3):735-43. PubMed ID: 3875617
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An intronic enhancer containing an N-box motif is required for synapse- and tissue-specific expression of the acetylcholinesterase gene in skeletal muscle fibers.
    Chan RY; Boudreau-Larivière C; Angus LM; Mankal FA; Jasmin BJ
    Proc Natl Acad Sci U S A; 1999 Apr; 96(8):4627-32. PubMed ID: 10200313
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of acetylcholinesterase forms in quail and chicken muscle cultures.
    Bulger JE; Randall WR; Nieberg PS; Patterson GT; McNamee MG; Wilson BW
    Dev Neurosci; 1982; 5(5-6):474-83. PubMed ID: 7160313
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The cyclic AMP-mediated expression of acetylcholinesterase in myotubes shows contrasting activation and repression between avian and mammalian enzymes.
    Choi RC; Siow NL; Zhu SQ; Wan DC; Wong YH; Tsim KW
    Mol Cell Neurosci; 2001 Apr; 17(4):732-45. PubMed ID: 11312608
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cooperation between the products of different nuclei in hybrid myotubes produces localized acetylcholine receptor clusters.
    Gordon H; Ralston E; Hall ZW
    Proc Natl Acad Sci U S A; 1992 Jul; 89(14):6595-8. PubMed ID: 1631161
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.