These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
585 related articles for article (PubMed ID: 23077118)
21. Effects of light availability on leaf gas exchange and expansion in lychee (Litchi chinensis). Hieke S; Menzel CM; Lüdders P Tree Physiol; 2002 Dec; 22(17):1249-56. PubMed ID: 12464578 [TBL] [Abstract][Full Text] [Related]
22. Responses of leaf structure and photosynthetic properties to intra-canopy light gradients: a common garden test with four broadleaf deciduous angiosperm and seven evergreen conifer tree species. Wyka TP; Oleksyn J; Zytkowiak R; Karolewski P; Jagodziński AM; Reich PB Oecologia; 2012 Sep; 170(1):11-24. PubMed ID: 22349756 [TBL] [Abstract][Full Text] [Related]
23. Sapling leaf trait responses to light, tree height and soil nutrients for three conifer species of contrasting shade tolerance. Lilles EB; Astrup R; Lefrançois ML; David Coates K Tree Physiol; 2014 Dec; 34(12):1334-47. PubMed ID: 25422385 [TBL] [Abstract][Full Text] [Related]
24. Foliar morphological and physiological plasticity in Picea abies and Abies alba saplings along a natural light gradient. Grassi G; Bagnaresi U Tree Physiol; 2001 Aug; 21(12-13):959-67. PubMed ID: 11498343 [TBL] [Abstract][Full Text] [Related]
25. Hydraulic function contributes to the variation in shoot morphology within the crown in Quercus crispula. Yoshimura K Tree Physiol; 2011 Jul; 31(7):774-81. PubMed ID: 21849594 [TBL] [Abstract][Full Text] [Related]
26. Effects of light intensity and duration on leaf hydraulic conductance and distribution of resistance in shoots of silver birch (Betula pendula). Sellin A; Ounapuu E; Kupper P Physiol Plant; 2008 Nov; 134(3):412-20. PubMed ID: 18513374 [TBL] [Abstract][Full Text] [Related]
27. Seedling ontogeny and environmental plasticity in two co-occurring shade-tolerant conifers and implications for environment-population interactions. Day ME; Zazzaro S; Perkins LB Am J Bot; 2014 Jan; 101(1):45-55. PubMed ID: 24368754 [TBL] [Abstract][Full Text] [Related]
28. Photosynthesis and resource distribution through plant canopies. Niinemets U Plant Cell Environ; 2007 Sep; 30(9):1052-71. PubMed ID: 17661747 [TBL] [Abstract][Full Text] [Related]
29. Leaf plasticity to light intensity in Italian cypress (Cupressus sempervirens L.): adaptability of a Mediterranean conifer cultivated in the Alps. Baldi P; Muthuchelian K; La Porta N J Photochem Photobiol B; 2012 Dec; 117():61-9. PubMed ID: 23079539 [TBL] [Abstract][Full Text] [Related]
30. Chlorophyll fluorescence kinetics, photosynthetic activity, and pigment composition of blue-shade and half-shade leaves as compared to sun and shade leaves of different trees. Lichtenthaler HK; Babani F; Navrátil M; Buschmann C Photosynth Res; 2013 Nov; 117(1-3):355-66. PubMed ID: 23670216 [TBL] [Abstract][Full Text] [Related]
31. Influence of nutrient supply on shade-sun acclimation of Picea abies seedlings: effects on foliar morphology, photosynthetic performance and growth. Grassi G; Minotta G Tree Physiol; 2000 May; 20(10):645-652. PubMed ID: 12651514 [TBL] [Abstract][Full Text] [Related]
32. Fine-scale geographic variation in photosynthetic-related traits of Picea glauca seedlings indicates local adaptation to climate. Benomar L; Lamhamedi MS; Villeneuve I; Rainville A; Beaulieu J; Bousquet J; Margolis HA Tree Physiol; 2015 Aug; 35(8):864-78. PubMed ID: 26116923 [TBL] [Abstract][Full Text] [Related]
33. Norway maple displays greater seasonal growth and phenotypic plasticity to light than native sugar maple. Paquette A; Fontaine B; Berninger F; Dubois K; Lechowicz MJ; Messier C; Posada JM; Valladares F; Brisson J Tree Physiol; 2012 Nov; 32(11):1339-47. PubMed ID: 23076822 [TBL] [Abstract][Full Text] [Related]
34. Impact of light quality on leaf and shoot hydraulic properties: a case study in silver birch (Betula pendula). Sellin A; Sack L; Õunapuu E; Karusion A Plant Cell Environ; 2011 Jul; 34(7):1079-87. PubMed ID: 21414012 [TBL] [Abstract][Full Text] [Related]
35. Importance of needle age and shoot structure on canopy net photosynthesis of balsam fir (Abies balsamea): a spatially inexplicit modeling analysis. Bernier PY; Raulier F; Stenberg P; Ung CH Tree Physiol; 2001 Aug; 21(12-13):815-30. PubMed ID: 11498329 [TBL] [Abstract][Full Text] [Related]
36. How is light interception efficiency related to shoot structure in tall canopy species? Osada N; Hiura T Oecologia; 2017 Sep; 185(1):29-41. PubMed ID: 28801737 [TBL] [Abstract][Full Text] [Related]
37. Physiological consequences of height-related morphological variation in Sequoia sempervirens foliage. Mullin LP; Sillett SC; Koch GW; Tu KP; Antoine ME Tree Physiol; 2009 Aug; 29(8):999-1010. PubMed ID: 19483187 [TBL] [Abstract][Full Text] [Related]
38. Variation in crown light utilization characteristics among tropical canopy trees. Kitajima K; Mulkey SS; Wright SJ Ann Bot; 2005 Feb; 95(3):535-47. PubMed ID: 15585541 [TBL] [Abstract][Full Text] [Related]
39. Leaves of Japanese oak (Quercus mongolica var. crispula) mitigate photoinhibition by adjusting electron transport capacities and thermal energy dissipation along the intra-canopy light gradient. Kitao M; Kitaoka S; Komatsu M; Utsugi H; Tobita H; Koike T; Maruyama Y Physiol Plant; 2012 Oct; 146(2):192-204. PubMed ID: 22394101 [TBL] [Abstract][Full Text] [Related]
40. Water deficit affects mesophyll limitation of leaves more strongly in sun than in shade in two contrasting Picea asperata populations. Duan B; Li Y; Zhang X; Korpelainen H; Li C Tree Physiol; 2009 Dec; 29(12):1551-61. PubMed ID: 19825867 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]