These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
70 related articles for article (PubMed ID: 23077120)
1. In vitro biological study of gelatin/PLG nanocomposite using MCF-7 breast cancer cells. Haroun AA; Abo-Zeid MA; Youssef AM; Gamal-Eldeen A J Biomed Mater Res A; 2013 May; 101(5):1388-96. PubMed ID: 23077120 [TBL] [Abstract][Full Text] [Related]
3. Construction of microenvironment onto titanium substrates to regulate the osteoblastic differentiation of bone marrow stromal cells in vitro and osteogenesis in vivo. Lai M; Cai K; Hu Y; Zhang Y; Li L; Luo Z; Hou Y; Li J; Ding X; Chen X J Biomed Mater Res A; 2013 Mar; 101(3):653-66. PubMed ID: 22927103 [TBL] [Abstract][Full Text] [Related]
4. Electrospun poly(epsilon-caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering. Ghasemi-Mobarakeh L; Prabhakaran MP; Morshed M; Nasr-Esfahani MH; Ramakrishna S Biomaterials; 2008 Dec; 29(34):4532-9. PubMed ID: 18757094 [TBL] [Abstract][Full Text] [Related]
5. Biocompatibility evaluation of nano-rod hydroxyapatite/gelatin coated with nano-HAp as a novel scaffold using mesenchymal stem cells. Zandi M; Mirzadeh H; Mayer C; Urch H; Eslaminejad MB; Bagheri F; Mivehchi H J Biomed Mater Res A; 2010 Mar; 92(4):1244-55. PubMed ID: 19322878 [TBL] [Abstract][Full Text] [Related]
6. Preparation of a biomimetic nanocomposite scaffold for bone tissue engineering via mineralization of gelatin hydrogel and study of mineral transformation in simulated body fluid. Azami M; Moosavifar MJ; Baheiraei N; Moztarzadeh F; Ai J J Biomed Mater Res A; 2012 May; 100(5):1347-55. PubMed ID: 22374752 [TBL] [Abstract][Full Text] [Related]
7. In vitro biocompatibility of Ti-45S5 bioglass nanocomposites and their scaffolds. Kaczmarek M; Jurczyk MU; Rubis B; Banaszak A; Kolecka A; Paszel A; Jurczyk K; Murias M; Sikora J; Jurczyk M J Biomed Mater Res A; 2014 May; 102(5):1316-24. PubMed ID: 23720374 [TBL] [Abstract][Full Text] [Related]
8. Fabricating microparticles/nanofibers composite and nanofiber scaffold with controllable pore size by rotating multichannel electrospinning. Huang YY; Wang DY; Chang LL; Yang YC J Biomater Sci Polym Ed; 2010; 21(11):1503-14. PubMed ID: 20534198 [TBL] [Abstract][Full Text] [Related]
9. Fabrication and characterization of gelatin-based biocompatible porous composite scaffold for bone tissue engineering. Khan MN; Islam JM; Khan MA J Biomed Mater Res A; 2012 Nov; 100(11):3020-8. PubMed ID: 22707185 [TBL] [Abstract][Full Text] [Related]
10. Stimulation of osteoblast responses to biomimetic nanocomposites of gelatin-hydroxyapatite for tissue engineering scaffolds. Kim HW; Kim HE; Salih V Biomaterials; 2005 Sep; 26(25):5221-30. PubMed ID: 15792549 [TBL] [Abstract][Full Text] [Related]
11. Chitosan-gelatin scaffolds for tissue engineering: physico-chemical properties and biological response of buffalo embryonic stem cells and transfectant of GFP-buffalo embryonic stem cells. Thein-Han WW; Saikhun J; Pholpramoo C; Misra RD; Kitiyanant Y Acta Biomater; 2009 Nov; 5(9):3453-66. PubMed ID: 19460465 [TBL] [Abstract][Full Text] [Related]
12. Co-electrospun blends of PLGA, gelatin, and elastin as potential nonthrombogenic scaffolds for vascular tissue engineering. Han J; Lazarovici P; Pomerantz C; Chen X; Wei Y; Lelkes PI Biomacromolecules; 2011 Feb; 12(2):399-408. PubMed ID: 21182235 [TBL] [Abstract][Full Text] [Related]
13. Biomimetic composite coating on rapid prototyped scaffolds for bone tissue engineering. Arafat MT; Lam CX; Ekaputra AK; Wong SY; Li X; Gibson I Acta Biomater; 2011 Feb; 7(2):809-20. PubMed ID: 20849985 [TBL] [Abstract][Full Text] [Related]
14. Spectral characterization of apatite formation on poly(2-hydroxyethylmethacrylate)-TiO2 nanocomposite film prepared by sol-gel process. Prashantha K; Rashmi BJ; Venkatesha TV; Lee JH Spectrochim Acta A Mol Biomol Spectrosc; 2006 Oct; 65(2):340-4. PubMed ID: 16503415 [TBL] [Abstract][Full Text] [Related]
15. MTA-enriched nanocomposite TiO(2)-polymeric powder coatings support human mesenchymal cell attachment and growth. Shi W; Mozumder MS; Zhang H; Zhu J; Perinpanayagam H Biomed Mater; 2012 Oct; 7(5):055006. PubMed ID: 22832809 [TBL] [Abstract][Full Text] [Related]
16. Synthesis and in vitro evaluation of gelatin/hydroxyapatite graft copolymers to form bionanocomposites. Haroun AA; Migonney V Int J Biol Macromol; 2010 Apr; 46(3):310-6. PubMed ID: 20083133 [TBL] [Abstract][Full Text] [Related]
17. Development of porous chitosan-gelatin/hydroxyapatite composite scaffolds for hard tissue-engineering applications. Isikli C; Hasirci V; Hasirci N J Tissue Eng Regen Med; 2012 Feb; 6(2):135-43. PubMed ID: 21351375 [TBL] [Abstract][Full Text] [Related]
18. Fabrication of gelatin-hyaluronic acid hybrid scaffolds with tunable porous structures for soft tissue engineering. Zhang F; He C; Cao L; Feng W; Wang H; Mo X; Wang J Int J Biol Macromol; 2011 Apr; 48(3):474-81. PubMed ID: 21255605 [TBL] [Abstract][Full Text] [Related]
19. Calcium phosphate formation in gelatin matrix using free ion precursors of Ca2+ and phosphate ions. Chang MC; DeLong R Dent Mater; 2009 Feb; 25(2):261-8. PubMed ID: 18760464 [TBL] [Abstract][Full Text] [Related]
20. Aligned bioactive multi-component nanofibrous nanocomposite scaffolds for bone tissue engineering. Jose MV; Thomas V; Xu Y; Bellis S; Nyairo E; Dean D Macromol Biosci; 2010 Apr; 10(4):433-44. PubMed ID: 20112236 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]