These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. The interaction between Trypanosoma rangeli and the nitrophorins in the salivary glands of the triatomine Rhodnius prolixus (Hemiptera; Reduviidae). Paim RM; Pereira MH; Araújo RN; Gontijo NF; Guarneri AA Insect Biochem Mol Biol; 2013 Mar; 43(3):229-36. PubMed ID: 23295786 [TBL] [Abstract][Full Text] [Related]
3. Interaction between Trypanosoma rangeli and the Rhodnius prolixus salivary gland depends on the phosphotyrosine ecto-phosphatase activity of the parasite. Dos-Santos AL; Dick CF; Alves-Bezerra M; Silveira TS; Paes LS; Gondim KC; Meyer-Fernandes JR Int J Parasitol; 2012 Aug; 42(9):819-27. PubMed ID: 22749957 [TBL] [Abstract][Full Text] [Related]
4. Role of superoxide and reactive nitrogen intermediates in Rhodnius prolixus (Reduviidae)/Trypanosoma rangeli interactions. Whitten MM; Mello CB; Gomes SA; Nigam Y; Azambuja P; Garcia ES; Ratcliffe NA Exp Parasitol; 2001 May; 98(1):44-57. PubMed ID: 11426951 [TBL] [Abstract][Full Text] [Related]
5. Behavioral fever response in Rhodnius prolixus (Reduviidae: Triatominae) to intracoelomic inoculation of Trypanosoma cruzi. Hinestroza G; Ortiz MI; Molina J Rev Soc Bras Med Trop; 2016; 49(4):425-32. PubMed ID: 27598628 [TBL] [Abstract][Full Text] [Related]
6. Trypanosoma cruzi-Trypanosoma rangeli co-infection ameliorates negative effects of single trypanosome infections in experimentally infected Rhodnius prolixus. Peterson JK; Graham AL; Elliott RJ; Dobson AP; Triana Chávez O Parasitology; 2016 Aug; 143(9):1157-67. PubMed ID: 27174360 [TBL] [Abstract][Full Text] [Related]
8. Modulation of IMD, Toll, and Jak/STAT Immune Pathways Genes in the Fat Body of Rolandelli A; Nascimento AEC; Silva LS; Rivera-Pomar R; Guarneri AA Front Cell Infect Microbiol; 2020; 10():598526. PubMed ID: 33537241 [No Abstract] [Full Text] [Related]
9. Development and interactions of Trypanosoma rangeli in and with the reduviid bug Rhodnius prolixus. Hecker H; Schwarzenbach M; Rudin W Parasitol Res; 1990; 76(4):311-8. PubMed ID: 2186407 [TBL] [Abstract][Full Text] [Related]
10. Nitric oxide loading of the salivary nitric-oxide-carrying hemoproteins (nitrophorins) in the blood-sucking bug Rhodnius prolixus. Nussenzveig RH; Bentley DL; Ribeiro JM J Exp Biol; 1995 May; 198(Pt 5):1093-8. PubMed ID: 8627144 [TBL] [Abstract][Full Text] [Related]
11. Parasite-mediated interactions within the insect vector: Trypanosoma rangeli strategies. Garcia ES; Castro DP; Figueiredo MB; Azambuja P Parasit Vectors; 2012 May; 5():105. PubMed ID: 22647620 [TBL] [Abstract][Full Text] [Related]
12. Trypanosoma cruzi: involvement of glycoinositolphospholipids in the attachment to the luminal midgut surface of Rhodnius prolixus. Nogueira NF; Gonzalez MS; Gomes JE; de Souza W; Garcia ES; Azambuja P; Nohara LL; Almeida IC; Zingales B; Colli W Exp Parasitol; 2007 Jun; 116(2):120-8. PubMed ID: 17306256 [TBL] [Abstract][Full Text] [Related]
13. Temperature and parasite life-history are important modulators of the outcome of Trypanosoma rangeli-Rhodnius prolixus interactions. Rodrigues Jde O; Lorenzo MG; Martins-Filho OA; Elliot SL; Guarneri AA Parasitology; 2016 Sep; 143(11):1459-68. PubMed ID: 27460893 [TBL] [Abstract][Full Text] [Related]
14. What is the 'true' effect of Trypanosoma rangeli on its triatomine bug vector? Peterson JK; Graham AL J Vector Ecol; 2016 Jun; 41(1):27-33. PubMed ID: 27232121 [TBL] [Abstract][Full Text] [Related]
15. Identification and distribution of carbohydrate moieties on the salivary glands of Rhodnius prolixus and their possible involvement in attachment/invasion by Trypanosoma rangeli. Basseri HR; Tew IF; Ratcliffe NA Exp Parasitol; 2002 Apr; 100(4):226-34. PubMed ID: 12128049 [TBL] [Abstract][Full Text] [Related]
16. Ecto-phosphatase activity on the external surface of Rhodnius prolixus salivary glands: modulation by carbohydrates and Trypanosoma rangeli. Gomes SA; Fonseca de Souza AL; Kiffer-Moreira T; Dick CF; dos Santos AL; Meyer-Fernandes JR Acta Trop; 2008 May; 106(2):137-42. PubMed ID: 18407240 [TBL] [Abstract][Full Text] [Related]
18. Lipoproteins from vertebrate host blood plasma are involved in Trypanosoma cruzi epimastigote agglutination and participate in interaction with the vector insect, Rhodnius prolixus. Moreira CJC; De Cicco NNT; Galdino TS; Feder D; Gonzalez MS; Miguel RB; Coura JR; Castro HC; Azambuja P; Atella GC; Ratcliffe NA; Mello CB Exp Parasitol; 2018 Dec; 195():24-33. PubMed ID: 30261188 [TBL] [Abstract][Full Text] [Related]
19. Marliére NP; Lorenzo MG; Guarneri AA Parasitology; 2022 Feb; 149(2):155-160. PubMed ID: 35234603 [TBL] [Abstract][Full Text] [Related]
20. Towards an understanding of the interactions of Trypanosoma cruzi and Trypanosoma rangeli within the reduviid insect host Rhodnius prolixus. Azambuja P; Ratcliffe NA; Garcia ES An Acad Bras Cienc; 2005 Sep; 77(3):397-404. PubMed ID: 16127548 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]