These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 23078169)

  • 1. Quality by design: optimization of a freeze-drying cycle via design space in case of heterogeneous drying behavior and influence of the freezing protocol.
    Pisano R; Fissore D; Barresi AA; Brayard P; Chouvenc P; Woinet B
    Pharm Dev Technol; 2013 Feb; 18(1):280-95. PubMed ID: 23078169
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correlation of laboratory and production freeze drying cycles.
    Kuu WY; Hardwick LM; Akers MJ
    Int J Pharm; 2005 Sep; 302(1-2):56-67. PubMed ID: 16099610
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fundamentals of freeze-drying.
    Nail SL; Jiang S; Chongprasert S; Knopp SA
    Pharm Biotechnol; 2002; 14():281-360. PubMed ID: 12189727
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heat and mass transfer scale-up issues during freeze-drying, III: control and characterization of dryer differences via operational qualification tests.
    Rambhatla S; Tchessalov S; Pikal MJ
    AAPS PharmSciTech; 2006 Apr; 7(2):E39. PubMed ID: 16796357
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fast freeze-drying cycle design and optimization using a PAT based on the measurement of product temperature.
    Bosca S; Barresi AA; Fissore D
    Eur J Pharm Biopharm; 2013 Oct; 85(2):253-62. PubMed ID: 23631849
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quality by design: scale-up of freeze-drying cycles in pharmaceutical industry.
    Pisano R; Fissore D; Barresi AA; Rastelli M
    AAPS PharmSciTech; 2013 Sep; 14(3):1137-49. PubMed ID: 23884856
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The nonsteady state modeling of freeze drying: in-process product temperature and moisture content mapping and pharmaceutical product quality applications.
    Pikal MJ; Cardon S; Bhugra C; Jameel F; Rambhatla S; Mascarenhas WJ; Akay HU
    Pharm Dev Technol; 2005; 10(1):17-32. PubMed ID: 15776810
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein purification process engineering. Freeze drying: A practical overview.
    Gatlin LA; Nail SL
    Bioprocess Technol; 1994; 18():317-67. PubMed ID: 7764173
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of Natural Variations in Freeze-Drying Parameters on Product Temperature History: Application of Quasi Steady-State Heat and Mass Transfer and Simple Statistics.
    Pikal MJ; Pande P; Bogner R; Sane P; Mudhivarthi V; Sharma P
    AAPS PharmSciTech; 2018 Oct; 19(7):2828-2842. PubMed ID: 30259404
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of mass and heat transfer parameters during freeze-drying cycles of pharmaceutical products.
    Hottot A; Vessot S; Andrieu J
    PDA J Pharm Sci Technol; 2005; 59(2):138-53. PubMed ID: 15971546
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of spin freezing versus conventional freezing as part of a continuous pharmaceutical freeze-drying concept for unit doses.
    De Meyer L; Van Bockstal PJ; Corver J; Vervaet C; Remon JP; De Beer T
    Int J Pharm; 2015 Dec; 496(1):75-85. PubMed ID: 25981618
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A New Model-Based Approach for the Development of Freeze-Drying Cycles Using a Small-Scale Freeze-Dryer.
    Massei A; Fissore D
    J Pharm Sci; 2023 Aug; 112(8):2176-2189. PubMed ID: 37211317
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Process optimization and transfer of freeze-drying in nested vial systems.
    Ehlers S; Schroeder R; Friess W
    Eur J Pharm Biopharm; 2021 Feb; 159():143-150. PubMed ID: 33429009
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Freeze Dryer Design on Heat Transfer Variability Investigated Using a 3D Mathematical Model.
    Scutellà B; Bourlès E; Plana-Fattori A; Fonseca F; Flick D; Trelea IC; Passot S
    J Pharm Sci; 2018 Aug; 107(8):2098-2106. PubMed ID: 29665380
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Developing a framework to model the primary drying step of a continuous freeze-drying process based on infrared radiation.
    Van Bockstal PJ; Corver J; Mortier STFC; De Meyer L; Nopens I; Gernaey KV; De Beer T
    Eur J Pharm Biopharm; 2018 Jun; 127():159-170. PubMed ID: 29476909
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Micro Freeze-Dryer and Infrared-Based PAT: Novel Tools for Primary Drying Design Space Determination of Freeze-Drying Processes.
    Harguindeguy M; Fissore D
    Pharm Res; 2021 Apr; 38(4):707-719. PubMed ID: 33686561
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Noncontact Infrared-Mediated Heat Transfer During Continuous Freeze-Drying of Unit Doses.
    Van Bockstal PJ; De Meyer L; Corver J; Vervaet C; De Beer T
    J Pharm Sci; 2017 Jan; 106(1):71-82. PubMed ID: 27321237
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Establishing a Multi-Vial Design Space for the Freeze-Drying Process by Means of Mathematical Modeling of the Primary Drying Stage.
    Pérez R; Alvarez MA; Acosta LL; Terry AM; Labrada A
    J Pharm Sci; 2024 Jun; 113(6):1506-1514. PubMed ID: 38342340
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design of freeze-drying processes for pharmaceuticals: practical advice.
    Tang X; Pikal MJ
    Pharm Res; 2004 Feb; 21(2):191-200. PubMed ID: 15032301
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The relevance of shear, sedimentation and diffusion during spin freezing, as potential first step of a continuous freeze-drying process for unit doses.
    Lammens J; Mortier STFC; De Meyer L; Vanbillemont B; Van Bockstal PJ; Van Herck S; Corver J; Nopens I; Vanhoorne V; De Geest BG; De Beer T; Vervaet C
    Int J Pharm; 2018 Mar; 539(1-2):1-10. PubMed ID: 29366945
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.