These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 23078169)

  • 41. Effect of controlled ice nucleation on primary drying stage and protein recovery in vials cooled in a modified freeze-dryer.
    Passot S; Tréléa IC; Marin M; Galan M; Morris GJ; Fonseca F
    J Biomech Eng; 2009 Jul; 131(7):074511. PubMed ID: 19640147
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Freeze drying--principles and practice for successful scale-up to manufacturing.
    Tsinontides SC; Rajniak P; Pham D; Hunke WA; Placek J; Reynolds SD
    Int J Pharm; 2004 Aug; 280(1-2):1-16. PubMed ID: 15265542
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Model for heat and mass transfer in freeze-drying of pellets.
    Trelea IC; Passot S; Marin M; Fonseca F
    J Biomech Eng; 2009 Jul; 131(7):074501. PubMed ID: 19640137
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Moisture measurement: a new method for monitoring freeze-drying cycles.
    Bardat A; Biguet J; Chatenet E; Courteille F
    J Parenter Sci Technol; 1993; 47(6):293-9. PubMed ID: 8120734
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Freeze-drying of nanosuspensions, 1: freezing rate versus formulation design as critical factors to preserve the original particle size distribution.
    Beirowski J; Inghelbrecht S; Arien A; Gieseler H
    J Pharm Sci; 2011 May; 100(5):1958-68. PubMed ID: 21374626
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Optimization of a pharmaceutical freeze-dried product and its process using an experimental design approach and innovative process analyzers.
    De Beer TR; Wiggenhorn M; Hawe A; Kasper JC; Almeida A; Quinten T; Friess W; Winter G; Vervaet C; Remon JP
    Talanta; 2011 Feb; 83(5):1623-33. PubMed ID: 21238761
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Use of manometric temperature measurement (MTM) and SMART freeze dryer technology for development of an optimized freeze-drying cycle.
    Gieseler H; Kramer T; Pikal MJ
    J Pharm Sci; 2007 Dec; 96(12):3402-18. PubMed ID: 17853427
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Quality by design in formulation and process development for a freeze-dried, small molecule parenteral product: a case study.
    Mockus LN; Paul TW; Pease NA; Harper NJ; Basu PK; Oslos EA; Sacha GA; Kuu WY; Hardwick LM; Karty JJ; Pikal MJ; Hee E; Khan MA; Nail SL
    Pharm Dev Technol; 2011; 16(6):549-76. PubMed ID: 21932931
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Evaluation of manometric temperature measurement, a process analytical technology tool for freeze-drying: part I, product temperature measurement.
    Tang X; Nail SL; Pikal MJ
    AAPS PharmSciTech; 2006 Feb; 7(1):E14. PubMed ID: 16584144
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Heat transfer characteristics of current primary packaging systems for pharmaceutical freeze-drying.
    Hibler S; Gieseler H
    J Pharm Sci; 2012 Nov; 101(11):4025-31. PubMed ID: 22893524
    [TBL] [Abstract][Full Text] [Related]  

  • 51. An Experimental-Based Approach to Construct the Process Design Space of a Freeze-Drying Process: An Effective Tool to Design an Optimum and Robust Freeze-Drying Process for Pharmaceuticals.
    Assegehegn G; Brito-de la Fuente E; Franco JM; Gallegos C
    J Pharm Sci; 2020 Jan; 109(1):785-796. PubMed ID: 31288035
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Robustness testing in pharmaceutical freeze-drying: inter-relation of process conditions and product quality attributes studied for a vaccine formulation.
    Schneid SC; Stärtzel PM; Lettner P; Gieseler H
    Pharm Dev Technol; 2011; 16(6):583-90. PubMed ID: 21563990
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Gap-freezing approach for shortening the lyophilization cycle time of pharmaceutical formulations-demonstration of the concept.
    Kuu WY; Doty MJ; Rebbeck CL; Hurst WS; Cho YK
    J Pharm Sci; 2013 Aug; 102(8):2572-88. PubMed ID: 23728733
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Evaluation of Microwave Vacuum Drying as an Alternative to Freeze-Drying of Biologics and Vaccines: the Power of Simple Modeling to Identify a Mechanism for Faster Drying Times Achieved with Microwave.
    Bhambhani A; Stanbro J; Roth D; Sullivan E; Jones M; Evans R; Blue J
    AAPS PharmSciTech; 2021 Jan; 22(1):52. PubMed ID: 33469785
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Experimental Aspects of Measuring the Vial Heat Transfer Coefficient in Pharmaceutical Freeze-Drying.
    Wegiel LA; Ferris SJ; Nail SL
    AAPS PharmSciTech; 2018 May; 19(4):1810-1817. PubMed ID: 29616490
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Molded Vial Manufacturing and Its Impact on Heat Transfer during Freeze-Drying: Vial Geometry Considerations.
    Wenzel T; Gieseler H
    AAPS PharmSciTech; 2021 Jan; 22(2):57. PubMed ID: 33502633
    [TBL] [Abstract][Full Text] [Related]  

  • 57. On the use of mathematical models to build the design space for the primary drying phase of a pharmaceutical lyophilization process.
    Giordano A; Barresi AA; Fissore D
    J Pharm Sci; 2011 Jan; 100(1):311-24. PubMed ID: 20575053
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Development of Freeze-Drying Cycles for Pharmaceutical Products Using a Micro Freeze-Dryer.
    Fissore D; Harguindeguy M; Ramirez DV; Thompson TN
    J Pharm Sci; 2020 Jan; 109(1):797-806. PubMed ID: 31678249
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Implementation of a process analytical technology system in a freeze-drying process using Raman spectroscopy for in-line process monitoring.
    De Beer TR; Allesø M; Goethals F; Coppens A; Heyden YV; De Diego HL; Rantanen J; Verpoort F; Vervaet C; Remon JP; Baeyens WR
    Anal Chem; 2007 Nov; 79(21):7992-8003. PubMed ID: 17896825
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Investigation of design space for freeze-drying: use of modeling for primary drying segment of a freeze-drying cycle.
    Koganti VR; Shalaev EY; Berry MR; Osterberg T; Youssef M; Hiebert DN; Kanka FA; Nolan M; Barrett R; Scalzo G; Fitzpatrick G; Fitzgibbon N; Luthra S; Zhang L
    AAPS PharmSciTech; 2011 Sep; 12(3):854-61. PubMed ID: 21710335
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.