These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 23078280)

  • 21. Functional classification of CATH superfamilies: a domain-based approach for protein function annotation.
    Das S; Lee D; Sillitoe I; Dawson NL; Lees JG; Orengo CA
    Bioinformatics; 2015 Nov; 31(21):3460-7. PubMed ID: 26139634
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An Integrated Framework for Functional Annotation of Protein Structural Domains.
    Deng L; Chen Z
    IEEE/ACM Trans Comput Biol Bioinform; 2015; 12(4):902-13. PubMed ID: 26357331
    [TBL] [Abstract][Full Text] [Related]  

  • 23. EVEREST: automatic identification and classification of protein domains in all protein sequences.
    Portugaly E; Harel A; Linial N; Linial M
    BMC Bioinformatics; 2006 Jun; 7():277. PubMed ID: 16749920
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structural SCOP superfamily level classification using unsupervised machine learning.
    Angadi UB; Venkatesulu M
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(2):601-8. PubMed ID: 21844638
    [TBL] [Abstract][Full Text] [Related]  

  • 25. PASS2 version 4: an update to the database of structure-based sequence alignments of structural domain superfamilies.
    Gandhimathi A; Nair AG; Sowdhamini R
    Nucleic Acids Res; 2012 Jan; 40(Database issue):D531-4. PubMed ID: 22123743
    [TBL] [Abstract][Full Text] [Related]  

  • 26. SCOPe: Manual Curation and Artifact Removal in the Structural Classification of Proteins - extended Database.
    Chandonia JM; Fox NK; Brenner SE
    J Mol Biol; 2017 Feb; 429(3):348-355. PubMed ID: 27914894
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Use of a database of structural alignments and phylogenetic trees in investigating the relationship between sequence and structural variability among homologous proteins.
    Balaji S; Srinivasan N
    Protein Eng; 2001 Apr; 14(4):219-26. PubMed ID: 11391013
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Large-scale comparison of protein sequence alignment algorithms with structure alignments.
    Sauder JM; Arthur JW; Dunbrack RL
    Proteins; 2000 Jul; 40(1):6-22. PubMed ID: 10813826
    [TBL] [Abstract][Full Text] [Related]  

  • 29. PASS2 version 6: a database of structure-based sequence alignments of protein domain superfamilies in accordance with SCOPe.
    Ghosh P; Bhattacharyya T; Mathew OK; Sowdhamini R
    Database (Oxford); 2019 Jan; 2019():. PubMed ID: 30820573
    [TBL] [Abstract][Full Text] [Related]  

  • 30. ASH structure alignment package: sensitivity and selectivity in domain classification.
    Standley DM; Toh H; Nakamura H
    BMC Bioinformatics; 2007 Apr; 8():116. PubMed ID: 17407606
    [TBL] [Abstract][Full Text] [Related]  

  • 31. SUPFAM: a database of sequence superfamilies of protein domains.
    Pandit SB; Bhadra R; Gowri VS; Balaji S; Anand B; Srinivasan N
    BMC Bioinformatics; 2004 Mar; 5():28. PubMed ID: 15113407
    [TBL] [Abstract][Full Text] [Related]  

  • 32. SUPERFAMILY 1.75 including a domain-centric gene ontology method.
    de Lima Morais DA; Fang H; Rackham OJ; Wilson D; Pethica R; Chothia C; Gough J
    Nucleic Acids Res; 2011 Jan; 39(Database issue):D427-34. PubMed ID: 21062816
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A network of SCOP hidden Markov models and its analysis.
    Zhang L; Watson LT; Heath LS
    BMC Bioinformatics; 2011 May; 12():191. PubMed ID: 21635719
    [TBL] [Abstract][Full Text] [Related]  

  • 34. SCOP: a Structural Classification of Proteins database.
    Hubbard TJ; Ailey B; Brenner SE; Murzin AG; Chothia C
    Nucleic Acids Res; 1999 Jan; 27(1):254-6. PubMed ID: 9847194
    [TBL] [Abstract][Full Text] [Related]  

  • 35. PASS2 database for the structure-based sequence alignment of distantly related SCOP domain superfamilies: update to version 5 and added features.
    Gandhimathi A; Ghosh P; Hariharaputran S; Mathew OK; Sowdhamini R
    Nucleic Acids Res; 2016 Jan; 44(D1):D410-4. PubMed ID: 26553811
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Automatic structure classification of small proteins using random forest.
    Jain P; Hirst JD
    BMC Bioinformatics; 2010 Jul; 11():364. PubMed ID: 20594334
    [TBL] [Abstract][Full Text] [Related]  

  • 37. PIRSF: family classification system at the Protein Information Resource.
    Wu CH; Nikolskaya A; Huang H; Yeh LS; Natale DA; Vinayaka CR; Hu ZZ; Mazumder R; Kumar S; Kourtesis P; Ledley RS; Suzek BE; Arminski L; Chen Y; Zhang J; Cardenas JL; Chung S; Castro-Alvear J; Dinkov G; Barker WC
    Nucleic Acids Res; 2004 Jan; 32(Database issue):D112-4. PubMed ID: 14681371
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Decision tree based information integration for automated protein classification.
    Camoğlu O; Can T; Singh AK; Wang YF
    J Bioinform Comput Biol; 2005 Jun; 3(3):717-42. PubMed ID: 16108091
    [TBL] [Abstract][Full Text] [Related]  

  • 39. New functional families (FunFams) in CATH to improve the mapping of conserved functional sites to 3D structures.
    Sillitoe I; Cuff AL; Dessailly BH; Dawson NL; Furnham N; Lee D; Lees JG; Lewis TE; Studer RA; Rentzsch R; Yeats C; Thornton JM; Orengo CA
    Nucleic Acids Res; 2013 Jan; 41(Database issue):D490-8. PubMed ID: 23203873
    [TBL] [Abstract][Full Text] [Related]  

  • 40. CATH: increased structural coverage of functional space.
    Sillitoe I; Bordin N; Dawson N; Waman VP; Ashford P; Scholes HM; Pang CSM; Woodridge L; Rauer C; Sen N; Abbasian M; Le Cornu S; Lam SD; Berka K; Varekova IH; Svobodova R; Lees J; Orengo CA
    Nucleic Acids Res; 2021 Jan; 49(D1):D266-D273. PubMed ID: 33237325
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.