BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

398 related articles for article (PubMed ID: 23078353)

  • 21. Shell-sheddable micelles based on dextran-SS-poly(epsilon-caprolactone) diblock copolymer for efficient intracellular release of doxorubicin.
    Sun H; Guo B; Li X; Cheng R; Meng F; Liu H; Zhong Z
    Biomacromolecules; 2010 Apr; 11(4):848-54. PubMed ID: 20205476
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Doxorubicin-loaded biodegradable self-assembly zein nanoparticle and its anti-cancer effect: Preparation, in vitro evaluation, and cellular uptake.
    Dong F; Dong X; Zhou L; Xiao H; Ho PY; Wong MS; Wang Y
    Colloids Surf B Biointerfaces; 2016 Apr; 140():324-331. PubMed ID: 26764113
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Intracellular pH-sensitive PEG-block-acetalated-dextrans as efficient drug delivery platforms.
    Zhang Z; Chen X; Chen L; Yu S; Cao Y; He C; Chen X
    ACS Appl Mater Interfaces; 2013 Nov; 5(21):10760-6. PubMed ID: 24090231
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The endocytic pathway and therapeutic efficiency of doxorubicin conjugated cholesterol-derived polymers.
    Sevimli S; Sagnella S; Macmillan A; Whan R; Kavallaris M; Bulmus V; Davis TP
    Biomater Sci; 2015 Feb; 3(2):323-35. PubMed ID: 26218123
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Amphiphilic polymer-mediated formation of laponite-based nanohybrids with robust stability and pH sensitivity for anticancer drug delivery.
    Wang G; Maciel D; Wu Y; Rodrigues J; Shi X; Yuan Y; Liu C; Tomás H; Li Y
    ACS Appl Mater Interfaces; 2014 Oct; 6(19):16687-95. PubMed ID: 25167168
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cisplatin-Stitched Polysaccharide Vesicles for Synergistic Cancer Therapy of Triple Antagonistic Drugs.
    Deshpande NU; Jayakannan M
    Biomacromolecules; 2017 Jan; 18(1):113-126. PubMed ID: 28064505
    [TBL] [Abstract][Full Text] [Related]  

  • 27. pH-labile and photochemically cross-linkable polymer vesicles from coumarin based random copolymer for cancer therapy.
    Samanta P; Kapat K; Maiti S; Biswas G; Dhara S; Dhara D
    J Colloid Interface Sci; 2019 Nov; 555():132-144. PubMed ID: 31377639
    [TBL] [Abstract][Full Text] [Related]  

  • 28. pH-Dependent doxorubicin release from terpolymer of starch, polymethacrylic acid and polysorbate 80 nanoparticles for overcoming multi-drug resistance in human breast cancer cells.
    Shalviri A; Raval G; Prasad P; Chan C; Liu Q; Heerklotz H; Rauth AM; Wu XY
    Eur J Pharm Biopharm; 2012 Nov; 82(3):587-97. PubMed ID: 22995704
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Development of novel polymeric micellar drug conjugates and nano-containers with hydrolyzable core structure for doxorubicin delivery.
    Mahmud A; Xiong XB; Lavasanifar A
    Eur J Pharm Biopharm; 2008 Aug; 69(3):923-34. PubMed ID: 18430550
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Thermal and pH responsive polymer-tethered multifunctional magnetic nanoparticles for targeted delivery of anticancer drug.
    Sahoo B; Devi KS; Banerjee R; Maiti TK; Pramanik P; Dhara D
    ACS Appl Mater Interfaces; 2013 May; 5(9):3884-93. PubMed ID: 23551195
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Phasor-Fluorescence Lifetime Imaging Microscopy Analysis to Monitor Intercellular Drug Release from a pH-Sensitive Polymeric Nanocarrier.
    Zhou T; Luo T; Song J; Qu J
    Anal Chem; 2018 Feb; 90(3):2170-2177. PubMed ID: 29336550
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Poly(ethyleneglycol)-b-poly(ε-caprolactone-co-γ-hydroxyl-ε- caprolactone) bearing pendant hydroxyl groups as nanocarriers for doxorubicin delivery.
    Chang L; Deng L; Wang W; Lv Z; Hu F; Dong A; Zhang J
    Biomacromolecules; 2012 Oct; 13(10):3301-10. PubMed ID: 22931197
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Doxorubicin Intracellular Release
    El Founi M; Laroui H; Canup BSB; Ametepe JS; Vanderesse R; Acherar S; Babin J; Ferji K; Chevalot I; Six JL
    ACS Appl Bio Mater; 2021 Mar; 4(3):2742-2751. PubMed ID: 35014313
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dual Functional Nanocarrier for Cellular Imaging and Drug Delivery in Cancer Cells Based on π-Conjugated Core and Biodegradable Polymer Arms.
    Kulkarni B; Surnar B; Jayakannan M
    Biomacromolecules; 2016 Mar; 17(3):1004-16. PubMed ID: 26842888
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Co-delivery of PDTC and doxorubicin by multifunctional micellar nanoparticles to achieve active targeted drug delivery and overcome multidrug resistance.
    Fan L; Li F; Zhang H; Wang Y; Cheng C; Li X; Gu CH; Yang Q; Wu H; Zhang S
    Biomaterials; 2010 Jul; 31(21):5634-42. PubMed ID: 20430433
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Folate-conjugated amphiphilic hyperbranched block copolymers based on Boltorn H40, poly(L-lactide) and poly(ethylene glycol) for tumor-targeted drug delivery.
    Prabaharan M; Grailer JJ; Pilla S; Steeber DA; Gong S
    Biomaterials; 2009 Jun; 30(16):3009-19. PubMed ID: 19250665
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The role of non-covalent interactions in anticancer drug loading and kinetic stability of polymeric micelles.
    Yang C; Attia AB; Tan JP; Ke X; Gao S; Hedrick JL; Yang YY
    Biomaterials; 2012 Apr; 33(10):2971-9. PubMed ID: 22244697
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nanoparticles based on star polymers as theranostic vectors: endosomal-triggered drug release combined with MRI sensitivity.
    Li Y; Duong HT; Laurent S; MacMillan A; Whan RM; Elst LV; Muller RN; Hu J; Lowe A; Boyer C; Davis TP
    Adv Healthc Mater; 2015 Jan; 4(1):148-56. PubMed ID: 24985790
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Polymersomes from dual responsive block copolymers: drug encapsulation by heating and acid-triggered release.
    Qiao ZY; Ji R; Huang XN; Du FS; Zhang R; Liang DH; Li ZC
    Biomacromolecules; 2013 May; 14(5):1555-63. PubMed ID: 23570500
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Theranostic, pH-Responsive, Doxorubicin-Loaded Nanoparticles Inducing Active Targeting and Apoptosis for Advanced Gastric Cancer.
    Ma H; Liu Y; Shi M; Shao X; Zhong W; Liao W; Xing MM
    Biomacromolecules; 2015 Dec; 16(12):4022-31. PubMed ID: 26477267
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.