These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 2307914)

  • 1. Convergence to spatial-temporal clines in the Fisher equation with time-periodic fitnesses.
    Hess P; Weinberger H
    J Math Biol; 1990; 28(1):83-98. PubMed ID: 2307914
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determining the optimal coefficient of the spatially periodic Fisher-KPP equation that minimizes the spreading speed.
    Ito R
    J Math Biol; 2020 May; 80(6):1953-1970. PubMed ID: 32211951
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Convergence to travelling waves in Fisher's population genetics model with a non-Lipschitzian reaction term.
    Drábek P; Takáč P
    J Math Biol; 2017 Oct; 75(4):929-972. PubMed ID: 28197714
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Global asymptotic stability of a periodic solution to an epidemic model.
    Volz R
    J Math Biol; 1982; 15(3):319-38. PubMed ID: 7153676
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Invasions Slow Down or Collapse in the Presence of Reactive Boundaries.
    Minors K; Dawes JHP
    Bull Math Biol; 2017 Oct; 79(10):2197-2214. PubMed ID: 28766158
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Invasion entire solutions in a time periodic Lotka-Volterra competition system with diffusion.
    Du LJ; Li WT; Wang JB
    Math Biosci Eng; 2017 Oct/Dec 1; 14(5-6):1187-1213. PubMed ID: 29161856
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Common asymptotic behavior of solutions and almost periodicity for discontinuous, delayed, and impulsive neural networks.
    Allegretto W; Papini D; Forti M
    IEEE Trans Neural Netw; 2010 Jul; 21(7):1110-25. PubMed ID: 20562046
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic reduction with applications to mathematical biology and other areas.
    Sacker RJ; Von Bremen HF
    J Biol Dyn; 2007 Oct; 1(4):437-53. PubMed ID: 22876827
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A singular dispersion relation arising in a caricature of a model for morphogenesis.
    Britton NF
    J Math Biol; 1988; 26(4):387-403. PubMed ID: 3199041
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Constructing new periodic exact solutions of evolution equations.
    Mao JM; Zengrong L; Yongluo C
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Oct; 60(4 Pt A):3589-96. PubMed ID: 11970192
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemotactic collapse for the Keller-Segel model.
    Herrero MA; Velázquez JJ
    J Math Biol; 1996 Dec; 35(2):177-94. PubMed ID: 9053436
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biological growth and spread modeled by systems of recursions. I. Mathematical theory.
    Lui R
    Math Biosci; 1989 Apr; 93(2):269-95. PubMed ID: 2520032
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stability analysis of Turing patterns generated by the Schnakenberg model.
    Iron D; Wei J; Winter M
    J Math Biol; 2004 Oct; 49(4):358-90. PubMed ID: 15657795
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diffusion with attrition.
    Grover NB
    J Math Biol; 2006 Dec; 53(6):889-903. PubMed ID: 16937150
    [TBL] [Abstract][Full Text] [Related]  

  • 15. State-dependent impulsive models of integrated pest management (IPM) strategies and their dynamic consequences.
    Tang S; Cheke RA
    J Math Biol; 2005 Mar; 50(3):257-92. PubMed ID: 15480671
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Discrete limit and monotonicity properties of the Floquet eigenvalue in an age structured cell division cycle model.
    Gaubert S; Lepoutre T
    J Math Biol; 2015 Dec; 71(6-7):1663-703. PubMed ID: 25814336
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protection zone in a diffusive predator-prey model with Beddington-DeAngelis functional response.
    He X; Zheng S
    J Math Biol; 2017 Jul; 75(1):239-257. PubMed ID: 27915430
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Global O(t(-α)) stability and global asymptotical periodicity for a non-autonomous fractional-order neural networks with time-varying delays.
    Chen B; Chen J
    Neural Netw; 2016 Jan; 73():47-57. PubMed ID: 26547243
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Global behavior of solutions of a periodically forced Sigmoid Beverton-Holt model.
    Harry AJ; Kent CM; Kocic VL
    J Biol Dyn; 2012; 6():212-34. PubMed ID: 22873588
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A reaction-diffusion within-host HIV model with cell-to-cell transmission.
    Ren X; Tian Y; Liu L; Liu X
    J Math Biol; 2018 Jun; 76(7):1831-1872. PubMed ID: 29305736
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.