These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 23079164)

  • 1. Fate of caffeine in mesocosms wetland planted with Scirpus validus.
    Zhang DQ; Hua T; Gersberg RM; Zhu J; Ng WJ; Tan SK
    Chemosphere; 2013 Jan; 90(4):1568-72. PubMed ID: 23079164
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbamazepine and naproxen: fate in wetland mesocosms planted with Scirpus validus.
    Zhang DQ; Hua T; Gersberg RM; Zhu J; Ng WJ; Tan SK
    Chemosphere; 2013 Mar; 91(1):14-21. PubMed ID: 23267729
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fate of pharmaceutical compounds in hydroponic mesocosms planted with Scirpus validus.
    Zhang DQ; Gersberg RM; Hua T; Zhu J; Goyal MK; Ng WJ; Tan SK
    Environ Pollut; 2013 Oct; 181():98-106. PubMed ID: 23845767
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of plant-driven uptake and translocation of clofibric acid by Scirpus validus.
    Zhang DQ; Gersberg RM; Hua T; Zhu J; Ng WJ; Tan SK
    Environ Sci Pollut Res Int; 2013 Jul; 20(7):4612-20. PubMed ID: 23274803
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interactive effects of nitrogen and phosphorus loadings on nutrient removal from simulated wastewater using Schoenoplectus validus in wetland microcosms.
    Zhang Z; Rengel Z; Meney K
    Chemosphere; 2008 Aug; 72(11):1823-8. PubMed ID: 18561977
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Laboratory study of heavy metal phytoremediation by three wetland macrophytes.
    Weiss J; Hondzo M; Biesboer D; Semmens M
    Int J Phytoremediation; 2006; 8(3):245-59. PubMed ID: 17120528
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Variation characteristics of chlorpyrifos in nonsterile wetland plant hydroponic system.
    Wang C; Zhou Q; Zhang L; Zhang Y; Xiao E; Wu Z
    Int J Phytoremediation; 2013; 15(6):550-60. PubMed ID: 23819296
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of water velocity on hydroponic phytoremediation of metals.
    Weiss P; Westbrook A; Weiss J; Gulliver J; Biesboer D
    Int J Phytoremediation; 2014; 16(2):203-17. PubMed ID: 24912210
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fate of perchlorate-contaminated water in upflow wetlands.
    Tan K; Jackson WA; Anderson TA; Pardue JH
    Water Res; 2004 Nov; 38(19):4173-85. PubMed ID: 15491665
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Copper uptake and translocation in a submerged aquatic plant Hydrilla verticillata (L.f.) Royle.
    Xue PY; Li GX; Liu WJ; Yan CZ
    Chemosphere; 2010 Nov; 81(9):1098-103. PubMed ID: 20934737
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of plant species on water quality at the outlet of a sludge treatment wetland.
    Gagnon V; Chazarenc F; Kõiv M; Brisson J
    Water Res; 2012 Oct; 46(16):5305-15. PubMed ID: 22828383
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of aquatic plants for removing polar microcontaminants: a microcosm experiment.
    Matamoros V; Nguyen LX; Arias CA; Salvadó V; Brix H
    Chemosphere; 2012 Aug; 88(10):1257-64. PubMed ID: 22560181
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantification of oxygen release by bulrush (Scirpus validus) roots in a constructed treatment wetland.
    Bezbaruah AN; Zhang TC
    Biotechnol Bioeng; 2005 Feb; 89(3):308-18. PubMed ID: 15744841
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of sulfamethoxazole removal by three wetland plant species under hydroponic conditions: uptake, accumulation, and physiological responses.
    Li L; Yang F; A D; Jiang Y; Chen M; Zhang X; Yang Y
    Int J Phytoremediation; 2024; 26(9):1383-1391. PubMed ID: 38459767
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of plant radial oxygen loss in constructed wetland combined with microbial fuel cell on nitrobenzene removal from aqueous solution.
    Di L; Li Y; Nie L; Wang S; Kong F
    J Hazard Mater; 2020 Jul; 394():122542. PubMed ID: 32240899
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phytotoxicity of wastewater containing lead (Pb) effects Scirpus grossus.
    Tangahu BV; Abdullah SR; Basri H; Idris M; Anuar N; Mukhlisin M
    Int J Phytoremediation; 2013; 15(8):814-26. PubMed ID: 23819277
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of dissimilatory iron and sulfate reduction on arsenic dynamics in the wetland rhizosphere and its bioaccumulation in wetland plants (Scirpus actus).
    Zhang Z; Moon HS; Myneni SCB; Jaffé PR
    J Hazard Mater; 2017 Jan; 321():382-389. PubMed ID: 27669379
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phytotoxicity and bioaccumulation of ZnO nanoparticles in Schoenoplectus tabernaemontani.
    Zhang D; Hua T; Xiao F; Chen C; Gersberg RM; Liu Y; Stuckey D; Ng WJ; Tan SK
    Chemosphere; 2015 Feb; 120():211-9. PubMed ID: 25063888
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A phytotoxicity test of bulrush (Scirpus grossus) grown with diesel contamination in a free-flow reed bed system.
    Al-Baldawi IA; Abdullah SR; Anuar N; Suja F; Idris M
    J Hazard Mater; 2013 May; 252-253():64-9. PubMed ID: 23500791
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Responses of Scirpus triqueter, soil enzymes and microbial community during phytoremediation of pyrene contaminated soil in simulated wetland.
    Zhang X; Liu X; Liu S; Liu F; Chen L; Xu G; Zhong C; Su P; Cao Z
    J Hazard Mater; 2011 Oct; 193():45-51. PubMed ID: 21899948
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.