BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 23079718)

  • 1. A simple packed bed device for antibody labelled rare cell capture from whole blood.
    Kralj JG; Arya C; Tona A; Forbes TP; Munson MS; Sorbara L; Srivastava S; Forry SP
    Lab Chip; 2012 Dec; 12(23):4972-5. PubMed ID: 23079718
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microsieve lab-chip device for rapid enumeration and fluorescence in situ hybridization of circulating tumor cells.
    Lim LS; Hu M; Huang MC; Cheong WC; Gan AT; Looi XL; Leong SM; Koay ES; Li MH
    Lab Chip; 2012 Nov; 12(21):4388-96. PubMed ID: 22930096
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidic devices for the isolation of circulating rare cells: a focus on affinity-based, dielectrophoresis, and hydrophoresis.
    Hyun KA; Jung HI
    Electrophoresis; 2013 Apr; 34(7):1028-41. PubMed ID: 23436295
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modulation of aspect ratio for complete separation in an inertial microfluidic channel.
    Zhou J; Giridhar PV; Kasper S; Papautsky I
    Lab Chip; 2013 May; 13(10):1919-29. PubMed ID: 23529341
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A combined micromagnetic-microfluidic device for rapid capture and culture of rare circulating tumor cells.
    Kang JH; Krause S; Tobin H; Mammoto A; Kanapathipillai M; Ingber DE
    Lab Chip; 2012 Jun; 12(12):2175-81. PubMed ID: 22453808
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High throughput capture of circulating tumor cells using an integrated microfluidic system.
    Liu Z; Zhang W; Huang F; Feng H; Shu W; Xu X; Chen Y
    Biosens Bioelectron; 2013 Sep; 47():113-9. PubMed ID: 23567630
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isolation of tumor cells using size and deformation.
    Mohamed H; Murray M; Turner JN; Caggana M
    J Chromatogr A; 2009 Nov; 1216(47):8289-95. PubMed ID: 19497576
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lectin-aided separation of circulating tumor cells and assay of their response to an anticancer drug in an integrated microfluidic device.
    Li L; Liu W; Wang J; Tu Q; Liu R; Wang J
    Electrophoresis; 2010 Sep; 31(18):3159-66. PubMed ID: 20872615
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In Situ Electrochemical ELISA for Specific Identification of Captured Cancer Cells.
    Safaei TS; Mohamadi RM; Sargent EH; Kelley SO
    ACS Appl Mater Interfaces; 2015 Jul; 7(26):14165-9. PubMed ID: 25938818
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rheologically biomimetic cell suspensions for decreased cell settling in microfluidic devices.
    Launiere CA; Czaplewski GJ; Myung JH; Hong S; Eddington DT
    Biomed Microdevices; 2011 Jun; 13(3):549-57. PubMed ID: 21409456
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polymeric microfluidic devices exhibiting sufficient capture of cancer cell line for isolation of circulating tumor cells.
    Ohnaga T; Shimada Y; Moriyama M; Kishi H; Obata T; Takata K; Okumura T; Nagata T; Muraguchi A; Tsukada K
    Biomed Microdevices; 2013 Aug; 15(4):611-616. PubMed ID: 23666489
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly Efficient Isolation of Circulating Tumor Cells Using a Simple Wedge-Shaped Microfluidic Device.
    Qin L; Zhou W; Zhang S; Cheng B; Wang S; Li S; Yang Y; Wang S; Liu K; Zhang N
    IEEE Trans Biomed Eng; 2019 Jun; 66(6):1536-1541. PubMed ID: 30307854
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simultaneous and selective isolation of multiple subpopulations of rare cells from peripheral blood using ensemble-decision aliquot ranking (eDAR).
    Zhao M; Wei B; Nelson WC; Schiro PG; Chiu DT
    Lab Chip; 2015 Aug; 15(16):3391-6. PubMed ID: 26160592
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enumeration, characterization, and collection of intact circulating tumor cells by cross contamination-free flow cytometry.
    Takao M; Takeda K
    Cytometry A; 2011 Feb; 79(2):107-17. PubMed ID: 21246706
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aptamer-enabled efficient isolation of cancer cells from whole blood using a microfluidic device.
    Sheng W; Chen T; Kamath R; Xiong X; Tan W; Fan ZH
    Anal Chem; 2012 May; 84(9):4199-206. PubMed ID: 22482734
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Double spiral microchannel for label-free tumor cell separation and enrichment.
    Sun J; Li M; Liu C; Zhang Y; Liu D; Liu W; Hu G; Jiang X
    Lab Chip; 2012 Oct; 12(20):3952-60. PubMed ID: 22868446
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Continuous separation of breast cancer cells from blood samples using multi-orifice flow fractionation (MOFF) and dielectrophoresis (DEP).
    Moon HS; Kwon K; Kim SI; Han H; Sohn J; Lee S; Jung HI
    Lab Chip; 2011 Mar; 11(6):1118-25. PubMed ID: 21298159
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Separation and capture of circulating tumor cells from whole blood using a bypass integrated microfluidic trap array.
    Yousang Yoon ; Sunki Cho ; Seonil Kim ; Eunsuk Choi ; Rae-Kwon Kim ; Su-Jae Lee ; Onejae Sul ; Seung-Beck Lee
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():4431-4. PubMed ID: 25570975
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DNA fragment-assisted microfluidic chip for capture and release of circulating tumor cells.
    Chen D; Wen J; Zeng S; Ma H
    Electrophoresis; 2019 Nov; 40(21):2845-2852. PubMed ID: 31267582
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Velocity effect on aptamer-based circulating tumor cell isolation in microfluidic devices.
    Wan Y; Tan J; Asghar W; Kim YT; Liu Y; Iqbal SM
    J Phys Chem B; 2011 Dec; 115(47):13891-6. PubMed ID: 22029250
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.