These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Single- and mixed-linker Cr-MIL-101 derivatives: a high-throughput investigation. Lammert M; Bernt S; Vermoortele F; De Vos DE; Stock N Inorg Chem; 2013 Aug; 52(15):8521-8. PubMed ID: 23829498 [TBL] [Abstract][Full Text] [Related]
4. Soft synthesis of isocyanate-functionalised metal-organic frameworks. Vitillo JG; Lescouet T; Savonnet M; Farrusseng D; Bordiga S Dalton Trans; 2012 Dec; 41(47):14236-8. PubMed ID: 23108033 [TBL] [Abstract][Full Text] [Related]
5. Novel route to size-controlled Fe-MIL-88B-NH2 metal-organic framework nanocrystals. Pham MH; Vuong GT; Vu AT; Do TO Langmuir; 2011 Dec; 27(24):15261-7. PubMed ID: 22053750 [TBL] [Abstract][Full Text] [Related]
6. Tuning functional sites and thermal stability of mixed-linker MOFs based on MIL-53(Al). Marx S; Kleist W; Huang J; Maciejewski M; Baiker A Dalton Trans; 2010 Apr; 39(16):3795-8. PubMed ID: 20372702 [TBL] [Abstract][Full Text] [Related]
7. Synthesis, characterization and sorption properties of NH2-MIL-47. Leus K; Couck S; Vandichel M; Vanhaelewyn G; Liu YY; Marin GB; Van Driessche I; Depla D; Waroquier M; Van Speybroeck V; Denayer JF; Van der Voort P Phys Chem Chem Phys; 2012 Nov; 14(44):15562-70. PubMed ID: 23073025 [TBL] [Abstract][Full Text] [Related]
8. An alternative pathway for the synthesis of isocyanato- and urea-functionalised metal-organic frameworks. Lescouet T; Vitillo JG; Bordiga S; Canivet J; Farrusseng D Dalton Trans; 2013 Jun; 42(23):8249-58. PubMed ID: 23591771 [TBL] [Abstract][Full Text] [Related]
9. Metal-organic framework MIL-53(Al) as a solid-phase microextraction adsorbent for the determination of 16 polycyclic aromatic hydrocarbons in water samples by gas chromatography-tandem mass spectrometry. Chen XF; Zang H; Wang X; Cheng JG; Zhao RS; Cheng CG; Lu XQ Analyst; 2012 Nov; 137(22):5411-9. PubMed ID: 23042089 [TBL] [Abstract][Full Text] [Related]
10. Direct covalent post-synthetic chemical modification of Cr-MIL-101 using nitrating acid. Bernt S; Guillerm V; Serre C; Stock N Chem Commun (Camb); 2011 Mar; 47(10):2838-40. PubMed ID: 21253627 [TBL] [Abstract][Full Text] [Related]
11. Water and ethanol desorption in the flexible metal organic frameworks, MIL-53 (Cr, Fe), investigated by complex impedance spectroscopy and density functional theory calculations. Devautour-Vinot S; Maurin G; Henn F; Serre C; Férey G Phys Chem Chem Phys; 2010 Oct; 12(39):12478-85. PubMed ID: 20721377 [TBL] [Abstract][Full Text] [Related]
12. The introduction of functional side groups and the application of the mixed-linker concept in divalent MIL-53(Ni) materials. Bitzer J; Titze-Alonso A; Roshdy A; Kleist W Dalton Trans; 2020 Jul; 49(26):9148-9154. PubMed ID: 32578640 [TBL] [Abstract][Full Text] [Related]
13. Amino substituted Cu3(btc)2: a new metal-organic framework with a versatile functionality. Peikert K; Hoffmann F; Fröba M Chem Commun (Camb); 2012 Nov; 48(91):11196-8. PubMed ID: 23064499 [TBL] [Abstract][Full Text] [Related]
14. Tandem catalysis with a bifunctional site-isolated Lewis acid-Brønsted base metal-organic framework, NH2-MIL-101(Al). Srirambalaji R; Hong S; Natarajan R; Yoon M; Hota R; Kim Y; Ho Ko Y; Kim K Chem Commun (Camb); 2012 Dec; 48(95):11650-2. PubMed ID: 23104231 [TBL] [Abstract][Full Text] [Related]
15. Comparative study of hydrogen sulfide adsorption in the MIL-53(Al, Cr, Fe), MIL-47(V), MIL-100(Cr), and MIL-101(Cr) metal-organic frameworks at room temperature. Hamon L; Serre C; Devic T; Loiseau T; Millange F; Férey G; De Weireld G J Am Chem Soc; 2009 Jul; 131(25):8775-7. PubMed ID: 19505146 [TBL] [Abstract][Full Text] [Related]
16. Adsorption of light hydrocarbons in the flexible MIL-53(Cr) and rigid MIL-47(V) metal-organic frameworks: a combination of molecular simulations and microcalorimetry/gravimetry measurements. Rosenbach N; Ghoufi A; Déroche I; Llewellyn PL; Devic T; Bourrelly S; Serre C; Férey G; Maurin G Phys Chem Chem Phys; 2010 Jun; 12(24):6428-37. PubMed ID: 20454715 [TBL] [Abstract][Full Text] [Related]
17. NH2-MIL-53(Al): a high-contrast reversible solid-state nonlinear optical switch. Serra-Crespo P; van der Veen MA; Gobechiya E; Houthoofd K; Filinchuk Y; Kirschhock CE; Martens JA; Sels BF; De Vos DE; Kapteijn F; Gascon J J Am Chem Soc; 2012 May; 134(20):8314-7. PubMed ID: 22578194 [TBL] [Abstract][Full Text] [Related]
18. Evidence of CO(2) molecule acting as an electron acceptor on a nanoporous metal-organic-framework MIL-53 or Cr(3+)(OH)(O(2)C-C(6)H(4)-CO(2)). Vimont A; Travert A; Bazin P; Lavalley JC; Daturi M; Serre C; Férey G; Bourrelly S; Llewellyn PL Chem Commun (Camb); 2007 Aug; (31):3291-3. PubMed ID: 17668104 [TBL] [Abstract][Full Text] [Related]
19. Sulfonyl chlorides as an efficient tool for the postsynthetic modification of Cr-MIL-101-SO3H and CAU-1-NH2. Klinkebiel A; Reimer N; Lammert M; Stock N; Lüning U Chem Commun (Camb); 2014 Aug; 50(66):9306-8. PubMed ID: 25000342 [TBL] [Abstract][Full Text] [Related]
20. A functionalized MIL-101(Cr) metal-organic framework for enhanced hydrogen release from ammonia borane at low temperature. Gao L; Li CY; Yung H; Chan KY Chem Commun (Camb); 2013 Nov; 49(90):10629-31. PubMed ID: 24098890 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]