These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
202 related articles for article (PubMed ID: 23080020)
21. A novel combination of DLS-optical microrheology and low frequency Raman spectroscopy to reveal underlying biopolymer self-assembly and gelation mechanisms. Amin S; Blake S; Kenyon SM; Kennel RC; Lewis EN J Chem Phys; 2014 Dec; 141(23):234201. PubMed ID: 25527928 [TBL] [Abstract][Full Text] [Related]
22. A novel two-layer, coupled finite element approach for modeling the nonlinear elastic and viscoelastic behavior of human erythrocytes. Klöppel T; Wall WA Biomech Model Mechanobiol; 2011 Jul; 10(4):445-59. PubMed ID: 20725846 [TBL] [Abstract][Full Text] [Related]
24. Viscoelastic and biochemical properties of erythrocytes during storage with SAG-M at +4 degrees C. Farges E; Grebe R; Baumann M Clin Hemorheol Microcirc; 2002; 27(1):1-11. PubMed ID: 12237485 [TBL] [Abstract][Full Text] [Related]
25. Modeling of Biomechanics and Biorheology of Red Blood Cells in Type 2 Diabetes Mellitus. Chang HY; Li X; Karniadakis GE Biophys J; 2017 Jul; 113(2):481-490. PubMed ID: 28746858 [TBL] [Abstract][Full Text] [Related]
26. Identification of biotic and abiotic particles by using a combination of optical tweezers and in situ Raman spectroscopy. Gessner R; Winter C; Rösch P; Schmitt M; Petry R; Kiefer W; Lankers M; Popp J Chemphyschem; 2004 Aug; 5(8):1159-70. PubMed ID: 15446738 [TBL] [Abstract][Full Text] [Related]
27. The nonlinear mechanical response of the red blood cell. Yoon YZ; Kotar J; Yoon G; Cicuta P Phys Biol; 2008 Aug; 5(3):036007. PubMed ID: 18698116 [TBL] [Abstract][Full Text] [Related]
28. Dynamic deformation of red blood cell in dual-trap optical tweezers. Rancourt-Grenier S; Wei MT; Bai JJ; Chiou A; Bareil PP; Duval PL; Sheng Y Opt Express; 2010 May; 18(10):10462-72. PubMed ID: 20588900 [TBL] [Abstract][Full Text] [Related]
29. [The effect of abnormal cell shape on the spectral distinguishing of erythrocytes using laser tweezers Raman spectroscopy]. Wang GW; Peng LX; Yao HL; Huang SS; Chen P; Li YQ Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Aug; 29(8):2117-21. PubMed ID: 19839321 [TBL] [Abstract][Full Text] [Related]
30. Quantitative Analysis of Viscoelastic Properties of Red Blood Cells using Optical Tweezers and Defocusing Microscopy. Barreto L; Gomez F; Lourenço PS; Freitas DG; Soares J; Berto-Junior C; Agero U; Viana NB; Pontes B J Vis Exp; 2022 Mar; (181):. PubMed ID: 35404355 [TBL] [Abstract][Full Text] [Related]
31. Complex viscoelasticity of normal and lectin treated erythrocytes using laser diffractometry. Riquelme BD; Valverde J; Rasia RJ Biorheology; 1998; 35(4-5):325-34. PubMed ID: 10474658 [TBL] [Abstract][Full Text] [Related]
32. Absorption spectroscopy of single red blood cells in the presence of mechanical deformations induced by optical traps. Wojdyla M; Raj S; Petrov D J Biomed Opt; 2012 Sep; 17(9):97006-1. PubMed ID: 23085923 [TBL] [Abstract][Full Text] [Related]
33. Viscoelasticity of diverse biological samples quantified by Acoustic Force Microrheology (AFMR). Bergamaschi G; Taris KH; Biebricher AS; Seymonson XMR; Witt H; Peterman EJG; Wuite GJL Commun Biol; 2024 Jun; 7(1):683. PubMed ID: 38834871 [TBL] [Abstract][Full Text] [Related]
34. Microrheology of erythrocytes, blood viscosity, and the distribution of blood flow in the microcirculation. Schmid-Schönbein H Int Rev Physiol; 1976; 9():1-62. PubMed ID: 977248 [TBL] [Abstract][Full Text] [Related]
35. Mechanical property analysis of stored red blood cell using optical tweezers. Li Y; Wen C; Xie H; Ye A; Yin Y Colloids Surf B Biointerfaces; 2009 May; 70(2):169-73. PubMed ID: 19168336 [TBL] [Abstract][Full Text] [Related]
36. Raman study of mechanically induced oxygenation state transition of red blood cells using optical tweezers. Rao S; Bálint S; Cossins B; Guallar V; Petrov D Biophys J; 2009 Jan; 96(1):209-16. PubMed ID: 18931252 [TBL] [Abstract][Full Text] [Related]
37. Automatic real time evaluation of red blood cell elasticity by optical tweezers. Moura DS; Silva DC; Williams AJ; Bezerra MA; Fontes A; de Araujo RE Rev Sci Instrum; 2015 May; 86(5):053702. PubMed ID: 26026527 [TBL] [Abstract][Full Text] [Related]
38. Analysis of single eukaryotic cells using Raman Tweezers. Faria EC; Gardner P Methods Mol Biol; 2012; 853():151-67. PubMed ID: 22323146 [TBL] [Abstract][Full Text] [Related]
39. An active one-particle microrheometer: incorporating magnetic tweezers to total internal reflection microscopy. Gong X; Hua L; Wu C; Ngai T Rev Sci Instrum; 2013 Mar; 84(3):033702. PubMed ID: 23556822 [TBL] [Abstract][Full Text] [Related]
40. Local membrane deformations activate Ca2+-dependent K+ and anionic currents in intact human red blood cells. Dyrda A; Cytlak U; Ciuraszkiewicz A; Lipinska A; Cueff A; Bouyer G; Egée S; Bennekou P; Lew VL; Thomas SL PLoS One; 2010 Feb; 5(2):e9447. PubMed ID: 20195477 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]