These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 23080037)

  • 1. Clinical designs of recent robot rehabilitation trials.
    Lo AC
    Am J Phys Med Rehabil; 2012 Nov; 91(11 Suppl 3):S204-16. PubMed ID: 23080037
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Trial design and reporting standards for intra-arterial cerebral thrombolysis for acute ischemic stroke.
    Higashida RT; Furlan AJ; Roberts H; Tomsick T; Connors B; Barr J; Dillon W; Warach S; Broderick J; Tilley B; Sacks D; ;
    Stroke; 2003 Aug; 34(8):e109-37. PubMed ID: 12869717
    [TBL] [Abstract][Full Text] [Related]  

  • 3. What's new in new technologies for upper extremity rehabilitation?
    Brochard S; Robertson J; Médée B; Rémy-Néris O
    Curr Opin Neurol; 2010 Dec; 23(6):683-7. PubMed ID: 20852420
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent trends for practical rehabilitation robotics, current challenges and the future.
    Yakub F; Md Khudzari AZ; Mori Y
    Int J Rehabil Res; 2014 Mar; 37(1):9-21. PubMed ID: 24126254
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Robot-assisted gait training in multiple sclerosis: a pilot randomized trial.
    Beer S; Aschbacher B; Manoglou D; Gamper E; Kool J; Kesselring J
    Mult Scler; 2008 Mar; 14(2):231-6. PubMed ID: 17942510
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Control strategies for effective robot assisted gait rehabilitation: the state of art and future prospects.
    Cao J; Xie SQ; Das R; Zhu GL
    Med Eng Phys; 2014 Dec; 36(12):1555-66. PubMed ID: 25205588
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An intrinsically safe mechanism for physically coupling humans with robots.
    O'Neill G; Patel H; Artemiadis P
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650510. PubMed ID: 24187325
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessing Effectiveness and Costs in Robot-Mediated Lower Limbs Rehabilitation: A Meta-Analysis and State of the Art.
    Carpino G; Pezzola A; Urbano M; Guglielmelli E
    J Healthc Eng; 2018; 2018():7492024. PubMed ID: 29973978
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effectiveness of robot-assisted therapy on ankle rehabilitation--a systematic review.
    Zhang M; Davies TC; Xie S
    J Neuroeng Rehabil; 2013 Mar; 10():30. PubMed ID: 23517734
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Review on design and control aspects of ankle rehabilitation robots.
    Jamwal PK; Hussain S; Xie SQ
    Disabil Rehabil Assist Technol; 2015 Mar; 10(2):93-101. PubMed ID: 24320195
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Robotic-assisted gait training in neurological patients: who may benefit?
    Schwartz I; Meiner Z
    Ann Biomed Eng; 2015 May; 43(5):1260-9. PubMed ID: 25724733
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Individual finger synchronized robot-assisted hand rehabilitation in subacute to chronic stroke: a prospective randomized clinical trial of efficacy.
    Hwang CH; Seong JW; Son DS
    Clin Rehabil; 2012 Aug; 26(8):696-704. PubMed ID: 22261813
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transfer of scientific concepts to clinical practice: recent robot-assisted training studies.
    Waldner A; Tomelleri C; Hesse S
    Funct Neurol; 2009; 24(4):173-7. PubMed ID: 20412721
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of robots for rehabilitation therapy: the Palo Alto VA/Stanford experience.
    Burgar CG; Lum PS; Shor PC; Machiel Van der Loos HF
    J Rehabil Res Dev; 2000; 37(6):663-73. PubMed ID: 11321002
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Robotic approaches for rehabilitation of hand function after stroke.
    Lum PS; Godfrey SB; Brokaw EB; Holley RJ; Nichols D
    Am J Phys Med Rehabil; 2012 Nov; 91(11 Suppl 3):S242-54. PubMed ID: 23080040
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Robot assisted treadmill training: mechanisms and training strategies.
    Hussain S; Xie SQ; Liu G
    Med Eng Phys; 2011 Jun; 33(5):527-33. PubMed ID: 21216650
    [TBL] [Abstract][Full Text] [Related]  

  • 17. State-of-the-art robotic devices for ankle rehabilitation: Mechanism and control review.
    Hussain S; Jamwal PK; Ghayesh MH
    Proc Inst Mech Eng H; 2017 Dec; 231(12):1224-1234. PubMed ID: 29065774
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Robot-assisted ankle rehabilitation: a review.
    Alvarez-Perez MG; Garcia-Murillo MA; Cervantes-Sánchez JJ
    Disabil Rehabil Assist Technol; 2020 May; 15(4):394-408. PubMed ID: 30856032
    [No Abstract]   [Full Text] [Related]  

  • 19. Does robot-assisted gait training ameliorate gait abnormalities in multiple sclerosis? A pilot randomized-control trial.
    Straudi S; Benedetti MG; Venturini E; Manca M; Foti C; Basaglia N
    NeuroRehabilitation; 2013; 33(4):555-63. PubMed ID: 24018369
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design, implementation and clinical tests of a wire-based robot for neurorehabilitation.
    Rosati G; Gallina P; Masiero S
    IEEE Trans Neural Syst Rehabil Eng; 2007 Dec; 15(4):560-9. PubMed ID: 18198714
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.