BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 23080040)

  • 1. Robotic approaches for rehabilitation of hand function after stroke.
    Lum PS; Godfrey SB; Brokaw EB; Holley RJ; Nichols D
    Am J Phys Med Rehabil; 2012 Nov; 91(11 Suppl 3):S242-54. PubMed ID: 23080040
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Robot-assisted rehabilitation of hand function.
    Balasubramanian S; Klein J; Burdet E
    Curr Opin Neurol; 2010 Dec; 23(6):661-70. PubMed ID: 20852421
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An overview of robotic/mechanical devices for post-stroke thumb rehabilitation.
    Suarez-Escobar M; Rendon-Velez E
    Disabil Rehabil Assist Technol; 2018 Oct; 13(7):683-703. PubMed ID: 29334274
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of electromyography-driven robot-aided hand training with neuromuscular electrical stimulation on hand control performance after chronic stroke.
    Rong W; Tong KY; Hu XL; Ho SK
    Disabil Rehabil Assist Technol; 2015 Mar; 10(2):149-59. PubMed ID: 24377757
    [TBL] [Abstract][Full Text] [Related]  

  • 5. HandCARE: a cable-actuated rehabilitation system to train hand function after stroke.
    Dovat L; Lambercy O; Gassert R; Maeder T; Milner T; Leong TC; Burdet E
    IEEE Trans Neural Syst Rehabil Eng; 2008 Dec; 16(6):582-91. PubMed ID: 19144590
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Combined Effects of Adaptive Control and Virtual Reality on Robot-Assisted Fine Hand Motion Rehabilitation in Chronic Stroke Patients: A Case Study.
    Huang X; Naghdy F; Naghdy G; Du H; Todd C
    J Stroke Cerebrovasc Dis; 2018 Jan; 27(1):221-228. PubMed ID: 28919312
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fine finger motor skill training with exoskeleton robotic hand in chronic stroke: stroke rehabilitation.
    Ockenfeld C; Tong RK; Susanto EA; Ho SK; Hu XL
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650392. PubMed ID: 24187211
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinematic data analysis for post-stroke patients following bilateral versus unilateral rehabilitation with an upper limb wearable robotic system.
    Kim H; Miller LM; Fedulow I; Simkins M; Abrams GM; Byl N; Rosen J
    IEEE Trans Neural Syst Rehabil Eng; 2013 Mar; 21(2):153-64. PubMed ID: 22855233
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An intention driven hand functions task training robotic system.
    Tong KY; Ho SK; Pang PK; Hu XL; Tam WK; Fung KL; Wei XJ; Chen PN; Chen M
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():3406-9. PubMed ID: 21097247
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of a robotic device for the rehabilitation of severe upper limb paresis in subacute stroke: exploration of patient/robot interactions and the motor recovery process.
    Duret C; Courtial O; Grosmaire AG; Hutin E
    Biomed Res Int; 2015; 2015():482389. PubMed ID: 25821804
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Robot-assisted exercise for hand weakness after stroke: a pilot study.
    Stein J; Bishop L; Gillen G; Helbok R
    Am J Phys Med Rehabil; 2011 Nov; 90(11):887-94. PubMed ID: 21952215
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wrist rehabilitation in chronic stroke patients by means of adaptive, progressive robot-aided therapy.
    Squeri V; Masia L; Giannoni P; Sandini G; Morasso P
    IEEE Trans Neural Syst Rehabil Eng; 2014 Mar; 22(2):312-25. PubMed ID: 23508271
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Robot-based hand motor therapy after stroke.
    Takahashi CD; Der-Yeghiaian L; Le V; Motiwala RR; Cramer SC
    Brain; 2008 Feb; 131(Pt 2):425-37. PubMed ID: 18156154
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Visual feedback distortion in a robotic environment for hand rehabilitation.
    Brewer BR; Klatzky R; Matsuoka Y
    Brain Res Bull; 2008 Apr; 75(6):804-13. PubMed ID: 18394527
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inter-hemispheric coupling changes associate with motor improvements after robotic stroke rehabilitation.
    Pellegrino G; Tomasevic L; Tombini M; Assenza G; Bravi M; Sterzi S; Giacobbe V; Zollo L; Guglielmelli E; Cavallo G; Vernieri F; Tecchio F
    Restor Neurol Neurosci; 2012; 30(6):497-510. PubMed ID: 22868224
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recovery of hand function with robot-assisted therapy in acute stroke patients: a randomized-controlled trial.
    Sale P; Mazzoleni S; Lombardi V; Galafate D; Massimiani MP; Posteraro F; Damiani C; Franceschini M
    Int J Rehabil Res; 2014 Sep; 37(3):236-42. PubMed ID: 24769557
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Feedback control of biomimetic exotendon device for hand rehabilitation in stroke.
    Kim DH; Lee SW; Park HS
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3618-21. PubMed ID: 25570774
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Compensating Hand Function in Chronic Stroke Patients Through the Robotic Sixth Finger.
    Salvietti G; Hussain I; Cioncoloni D; Taddei S; Rossi S; Prattichizzo D
    IEEE Trans Neural Syst Rehabil Eng; 2017 Feb; 25(2):142-150. PubMed ID: 26890911
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An EMG-driven exoskeleton hand robotic training device on chronic stroke subjects: task training system for stroke rehabilitation.
    Ho NS; Tong KY; Hu XL; Fung KL; Wei XJ; Rong W; Susanto EA
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975340. PubMed ID: 22275545
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Robot-assisted therapy for arm recovery for stroke patients: state of the art and clinical implication.
    Morone G; Cocchi I; Paolucci S; Iosa M
    Expert Rev Med Devices; 2020 Mar; 17(3):223-233. PubMed ID: 32107946
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 13.