These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 23080040)

  • 21. The effects of post-stroke upper-limb training with an electromyography (EMG)-driven hand robot.
    Hu XL; Tong KY; Wei XJ; Rong W; Susanto EA; Ho SK
    J Electromyogr Kinesiol; 2013 Oct; 23(5):1065-74. PubMed ID: 23932795
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Exploratory study on the effects of a robotic hand rehabilitation device on changes in grip strength and brain activity after stroke.
    Pinter D; Pegritz S; Pargfrieder C; Reiter G; Wurm W; Gattringer T; Linderl-Madrutter R; Neuper C; Fazekas F; Grieshofer P; Enzinger C
    Top Stroke Rehabil; 2013; 20(4):308-16. PubMed ID: 23893830
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Stroke Rehabilitation: Therapy Robots and Assistive Devices.
    Klamroth-Marganska V
    Adv Exp Med Biol; 2018; 1065():579-587. PubMed ID: 30051408
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The potential of iRest in measuring the hand function performance of stroke patients.
    Abdul Rahman H; Khor KX; Yeong CF; Su EL; Narayanan AL
    Biomed Mater Eng; 2017; 28(2):105-116. PubMed ID: 28372264
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Combining Upper Limb Robotic Rehabilitation with Other Therapeutic Approaches after Stroke: Current Status, Rationale, and Challenges.
    Mazzoleni S; Duret C; Grosmaire AG; Battini E
    Biomed Res Int; 2017; 2017():8905637. PubMed ID: 29057269
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Robotic arm skate for stroke rehabilitation.
    Wong CK; Jordan K; King M
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975389. PubMed ID: 22275593
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The value of robotic systems in stroke rehabilitation.
    Masiero S; Poli P; Rosati G; Zanotto D; Iosa M; Paolucci S; Morone G
    Expert Rev Med Devices; 2014 Mar; 11(2):187-98. PubMed ID: 24479445
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Taking a lesson from patients' recovery strategies to optimize training during robot-aided rehabilitation.
    Colombo R; Sterpi I; Mazzone A; Delconte C; Pisano F
    IEEE Trans Neural Syst Rehabil Eng; 2012 May; 20(3):276-85. PubMed ID: 22623406
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The effects of electromechanical wrist robot assistive system with neuromuscular electrical stimulation for stroke rehabilitation.
    Hu XL; Tong KY; Li R; Xue JJ; Ho SK; Chen P
    J Electromyogr Kinesiol; 2012 Jun; 22(3):431-9. PubMed ID: 22277205
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A comparison between electromyography-driven robot and passive motion device on wrist rehabilitation for chronic stroke.
    Hu XL; Tong KY; Song R; Zheng XJ; Leung WW
    Neurorehabil Neural Repair; 2009 Oct; 23(8):837-46. PubMed ID: 19531605
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Validation of the efficiency of a robotic rehabilitation training system for recovery of severe plegie hand motor function after a stroke.
    Tanabe H; Ikuta M; Morita Y
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():579-584. PubMed ID: 28813882
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A rehabilitation device to improve the hand grasp function of stroke patients using a patient-driven approach.
    Park W; Jeong W; Kwon GH; Kim YH; Kim L
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650482. PubMed ID: 24187299
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Clinical effects of using HEXORR (Hand Exoskeleton Rehabilitation Robot) for movement therapy in stroke rehabilitation.
    Godfrey SB; Holley RJ; Lum PS
    Am J Phys Med Rehabil; 2013 Nov; 92(11):947-58. PubMed ID: 23900016
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Automating activity-based interventions: the role of robotics.
    Hidler J; Hamm LF; Lichy A; Groah SL
    J Rehabil Res Dev; 2008; 45(2):337-44. PubMed ID: 18566951
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A feasibility study of the effect of multichannel electrical stimulation and gravity compensation on hand function in stroke patients: a pilot study.
    Krabben T; Buurke JH; Prange GB; Rietman JS
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650370. PubMed ID: 24187189
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Translating research into clinical practice: integrating robotics into neurorehabilitation for stroke survivors.
    Backus D; Winchester P; Tefertiller C
    Top Stroke Rehabil; 2010; 17(5):362-70. PubMed ID: 21131261
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Portable and Reconfigurable Wrist Robot Improves Hand Function for Post-Stroke Subjects.
    Khor KX; Chin PJH; Yeong CF; Su ELM; Narayanan ALT; Abdul Rahman H; Khan QI
    IEEE Trans Neural Syst Rehabil Eng; 2017 Oct; 25(10):1864-1873. PubMed ID: 28410110
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Development and pilot testing of HEXORR: hand EXOskeleton rehabilitation robot.
    Schabowsky CN; Godfrey SB; Holley RJ; Lum PS
    J Neuroeng Rehabil; 2010 Jul; 7():36. PubMed ID: 20667083
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Three upper limb robotic devices for stroke rehabilitation: a review and clinical perspective.
    Bishop L; Stein J
    NeuroRehabilitation; 2013; 33(1):3-11. PubMed ID: 23949043
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Predicting Functional Recovery in Chronic Stroke Rehabilitation Using Event-Related Desynchronization-Synchronization during Robot-Assisted Movement.
    Caimmi M; Visani E; Digiacomo F; Scano A; Chiavenna A; Gramigna C; Molinari Tosatti L; Franceschetti S; Molteni F; Panzica F
    Biomed Res Int; 2016; 2016():7051340. PubMed ID: 27057546
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.