BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 23080169)

  • 1. Purinergic modulation of carotid body glomus cell hypoxia response during postnatal maturation in rats.
    Carroll JL; Agarwal A; Donnelly DF; Kim I
    Adv Exp Med Biol; 2012; 758():249-53. PubMed ID: 23080169
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ATP inhibits the hypoxia response in type I cells of rat carotid bodies.
    Xu J; Xu F; Tse FW; Tse A
    J Neurochem; 2005 Mar; 92(6):1419-30. PubMed ID: 15748160
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pivotal role of nucleotide P2X2 receptor subunit of the ATP-gated ion channel mediating ventilatory responses to hypoxia.
    Rong W; Gourine AV; Cockayne DA; Xiang Z; Ford AP; Spyer KM; Burnstock G
    J Neurosci; 2003 Dec; 23(36):11315-21. PubMed ID: 14672995
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes in oxygen sensitivity of TASK in carotid body glomus cells during early postnatal development.
    Kim D; Papreck JR; Kim I; Donnelly DF; Carroll JL
    Respir Physiol Neurobiol; 2011 Aug; 177(3):228-35. PubMed ID: 21530688
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hypoxic intensity: a determinant for the contribution of ATP and adenosine to the genesis of carotid body chemosensory activity.
    Conde SV; Monteiro EC; Rigual R; Obeso A; Gonzalez C
    J Appl Physiol (1985); 2012 Jun; 112(12):2002-10. PubMed ID: 22500005
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of propofol on isolated neonatal rat carotid body glomus cell response to hypoxia and hypercapnia.
    O'Donohoe PB; Turner PJ; Huskens N; Buckler KJ; Pandit JJ
    Respir Physiol Neurobiol; 2019 Feb; 260():17-27. PubMed ID: 30389452
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ATP causes glomus cell [Ca2+]c increase without corresponding increases in CSN activity.
    Mokashi A; Li J; Roy A; Baby SM; Lahiri S
    Respir Physiol Neurobiol; 2003 Oct; 138(1):1-18. PubMed ID: 14519374
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expression of multiple P2X receptors by glossopharyngeal neurons projecting to rat carotid body O2-chemoreceptors: role in nitric oxide-mediated efferent inhibition.
    Campanucci VA; Zhang M; Vollmer C; Nurse CA
    J Neurosci; 2006 Sep; 26(37):9482-93. PubMed ID: 16971532
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Autocrine and paracrine actions of ATP in rat carotid body.
    Tse A; Yan L; Lee AK; Tse FW
    Can J Physiol Pharmacol; 2012 Jun; 90(6):705-11. PubMed ID: 22509744
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Serotonin-mediated modulation of hypoxia-induced intracellular calcium responses in glomus cells isolated from rat carotid body.
    Yokoyama T; Nakamuta N; Kusakabe T; Yamamoto Y
    Neurosci Lett; 2015 Jun; 597():149-53. PubMed ID: 25937361
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Non-additive interactions between mitochondrial complex IV blockers and hypoxia in rat carotid body responses.
    Donnelly DF; Kim I; Mulligan EM; Carroll JL
    Respir Physiol Neurobiol; 2014 Jan; 190():62-9. PubMed ID: 24096081
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Postnatal development of carotid body glomus cell response to hypoxia.
    Wasicko MJ; Breitwieser GE; Kim I; Carroll JL
    Respir Physiol Neurobiol; 2006 Dec; 154(3):356-71. PubMed ID: 16466972
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interleukin-6 increases intracellular Ca2+ concentration and induces catecholamine secretion in rat carotid body glomus cells.
    Fan J; Zhang B; Shu HF; Zhang XY; Wang X; Kuang F; Liu L; Peng ZW; Wu R; Zhou Z; Wang BR
    J Neurosci Res; 2009 Sep; 87(12):2757-62. PubMed ID: 19396873
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CaV3.2 T-type Ca2+ channels mediate the augmented calcium influx in carotid body glomus cells by chronic intermittent hypoxia.
    Makarenko VV; Ahmmed GU; Peng YJ; Khan SA; Nanduri J; Kumar GK; Fox AP; Prabhakar NR
    J Neurophysiol; 2016 Jan; 115(1):345-54. PubMed ID: 26561606
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ATP triggers intracellular Ca2+ release in type II cells of the rat carotid body.
    Xu J; Tse FW; Tse A
    J Physiol; 2003 Jun; 549(Pt 3):739-47. PubMed ID: 12730345
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contribution of adenosine and ATP to the carotid body chemosensory activity in ageing.
    Sacramento JF; Olea E; Ribeiro MJ; Prieto-Lloret J; Melo BF; Gonzalez C; Martins FO; Monteiro EC; Conde SV
    J Physiol; 2019 Oct; 597(19):4991-5008. PubMed ID: 31426127
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Purinergic signalling mediates bidirectional crosstalk between chemoreceptor type I and glial-like type II cells of the rat carotid body.
    Murali S; Nurse CA
    J Physiol; 2016 Jan; 594(2):391-406. PubMed ID: 26537220
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of glial-like type II cells as paracrine modulators of carotid body chemoreception.
    Nurse CA; Leonard EM; Salman S
    Physiol Genomics; 2018 Apr; 50(4):255-262. PubMed ID: 29521602
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Purinergic stimulation of carotid body efferent glossopharyngeal neurones increases intracellular Ca2+ and nitric oxide production.
    Lowe M; Park SJ; Nurse CA; Campanucci VA
    Exp Physiol; 2013 Jul; 98(7):1199-212. PubMed ID: 23525247
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of hypoxia-evoked ATP release from chemoreceptor cells of the rat carotid body.
    Buttigieg J; Nurse CA
    Biochem Biophys Res Commun; 2004 Sep; 322(1):82-7. PubMed ID: 15313176
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.