BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 23080178)

  • 1. Effect of chronic caffeine intake on carotid body catecholamine dynamics in control and chronically hypoxic rats.
    Conde SV; Obeso A; Monteiro EC; Gonzalez C
    Adv Exp Med Biol; 2012; 758():315-23. PubMed ID: 23080178
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chronic caffeine intake in adult rat inhibits carotid body sensitization produced by chronic sustained hypoxia but maintains intact chemoreflex output.
    Conde SV; Ribeiro MJ; Obeso A; Rigual R; Monteiro EC; Gonzalez C
    Mol Pharmacol; 2012 Dec; 82(6):1056-65. PubMed ID: 22930709
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adenosine Receptor Blockade by Caffeine Inhibits Carotid Sinus Nerve Chemosensory Activity in Chronic Intermittent Hypoxic Animals.
    Sacramento JF; Gonzalez C; Gonzalez-Martin MC; Conde SV
    Adv Exp Med Biol; 2015; 860():133-7. PubMed ID: 26303475
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The A(2B)-D(2) receptor interaction that controls carotid body catecholamines release locates between the last two steps of hypoxic transduction cascade.
    Conde SV; Obeso A; Monteiro EC; Gonzalez C
    Adv Exp Med Biol; 2009; 648():161-8. PubMed ID: 19536477
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Caffeine inhibition of rat carotid body chemoreceptors is mediated by A2A and A2B adenosine receptors.
    Conde SV; Obeso A; Vicario I; Rigual R; Rocher A; Gonzalez C
    J Neurochem; 2006 Jul; 98(2):616-28. PubMed ID: 16805851
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An antagonistic interaction between A2B adenosine and D2 dopamine receptors modulates the function of rat carotid body chemoreceptor cells.
    Conde SV; Gonzalez C; Batuca JR; Monteiro EC; Obeso A
    J Neurochem; 2008 Dec; 107(5):1369-81. PubMed ID: 18823369
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chronic hypoxia enhances endothelin-1-induced intracellular calcium elevation in rat carotid body chemoreceptors and up-regulates ETA receptor expression.
    Chen Y; Tipoe GL; Liong E; Leung S; Lam SY; Iwase R; Tjong YW; Fung ML
    Pflugers Arch; 2002 Feb; 443(4):565-73. PubMed ID: 11907823
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chronic hypoxia modulates the function and expression of melatonin receptors in the rat carotid body.
    Tjong YW; Chen Y; Liong EC; Tipoe GL; Fung ML
    J Pineal Res; 2006 Mar; 40(2):125-34. PubMed ID: 16441549
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular identification and functional role of voltage-gated sodium channels in rat carotid body chemoreceptor cells. Regulation of expression by chronic hypoxia in vivo.
    Caceres AI; Obeso A; Gonzalez C; Rocher A
    J Neurochem; 2007 Jul; 102(1):231-45. PubMed ID: 17564680
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Augmentation of hypoxia-induced nitric oxide generation in the rat carotid body adapted to chronic hypoxia: an involvement of constitutive and inducible nitric oxide synthases.
    Ye JS; Tipoe GL; Fung PC; Fung ML
    Pflugers Arch; 2002 May; 444(1-2):178-85. PubMed ID: 11976930
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alteration of carotid body chemoreflexes after neonatal intermittent hypoxia and caffeine treatment in rat pups.
    Julien CA; Joseph V; Bairam A
    Respir Physiol Neurobiol; 2011 Aug; 177(3):301-12. PubMed ID: 21609788
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acute hypoxic ventilation, carotid body cell division, and dopamine content during early hypoxia in rats.
    Bee D; Pallot DJ
    J Appl Physiol (1985); 1995 Nov; 79(5):1504-11. PubMed ID: 8594006
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of hypoxia on catecholamine dynamics in the rat carotid body.
    Brokaw JJ; Hansen JT; Christie DS
    J Auton Nerv Syst; 1985 May; 13(1):35-47. PubMed ID: 2860150
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of chronic hypoxia on opioid peptide and catecholamine levels and on the release of dopamine in the rabbit carotid body.
    González-Guerrero PR; Rigual R; González C
    J Neurochem; 1993 May; 60(5):1769-76. PubMed ID: 8473895
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced adenosine A2b receptor signaling facilitates stimulus-induced catecholamine secretion in chronically hypoxic carotid body type I cells.
    Livermore S; Nurse CA
    Am J Physiol Cell Physiol; 2013 Oct; 305(7):C739-50. PubMed ID: 23885058
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of ATP and adenosine on carotid body function during development.
    Bairam A; Niane LM; Joseph V
    Respir Physiol Neurobiol; 2013 Jan; 185(1):57-66. PubMed ID: 22721945
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Upregulation of a local renin-angiotensin system in the rat carotid body during chronic intermittent hypoxia.
    Lam SY; Liu Y; Ng KM; Liong EC; Tipoe GL; Leung PS; Fung ML
    Exp Physiol; 2014 Jan; 99(1):220-31. PubMed ID: 24036592
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RT-PCR and pharmacological analysis of L-and T-type calcium channels in rat carotid body.
    Cáceres AI; Gonzalez-Obeso E; Gonzalez C; Rocher A
    Adv Exp Med Biol; 2009; 648():105-12. PubMed ID: 19536471
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Altered expression of adenosine A1 and A2A receptors in the carotid body and nucleus tractus solitarius of adult male and female rats following neonatal caffeine treatment.
    Bairam A; Joseph V; Lajeunesse Y; Kinkead R
    Brain Res; 2009 Sep; 1287():74-83. PubMed ID: 19563784
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Upregulation of pituitary adenylate cyclase activating polypeptide and its receptor expression in the rat carotid body in chronic and intermittent hypoxia.
    Lam SY; Liu Y; Liong EC; Tipoe GL; Fung ML
    Adv Exp Med Biol; 2012; 758():301-6. PubMed ID: 23080176
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.