BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 23080255)

  • 21. Changes in composition and content of mycolic acids in glutamate-overproducing Corynebacterium glutamicum.
    Hashimoto K; Kawasaki H; Akazawa K; Nakamura J; Asakura Y; Kudo T; Sakuradani E; Shimizu S; Nakamatsu T
    Biosci Biotechnol Biochem; 2006 Jan; 70(1):22-30. PubMed ID: 16428817
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparative study of flux redistribution of metabolic pathway in glutamate production by two coryneform bacteria.
    Shirai T; Nakato A; Izutani N; Nagahisa K; Shioya S; Kimura E; Kawarabayasi Y; Yamagishi A; Gojobori T; Shimizu H
    Metab Eng; 2005 Mar; 7(2):59-69. PubMed ID: 15781416
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Corynebacterium glutamicum Metabolic Engineering with CRISPR Interference (CRISPRi).
    Cleto S; Jensen JV; Wendisch VF; Lu TK
    ACS Synth Biol; 2016 May; 5(5):375-85. PubMed ID: 26829286
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of phosphoenolpyruvate carboxylase desensitization on glutamic acid production in Corynebacterium glutamicum ATCC 13032.
    Wada M; Sawada K; Ogura K; Shimono Y; Hagiwara T; Sugimoto M; Onuki A; Yokota A
    J Biosci Bioeng; 2016 Feb; 121(2):172-7. PubMed ID: 26168906
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of odhA overexpression and odhA antisense RNA expression on Tween-40-triggered glutamate production by Corynebacterium glutamicum.
    Kim J; Hirasawa T; Sato Y; Nagahisa K; Furusawa C; Shimizu H
    Appl Microbiol Biotechnol; 2009 Jan; 81(6):1097-106. PubMed ID: 18923827
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Synthetic biology platform of CoryneBrick vectors for gene expression in Corynebacterium glutamicum and its application to xylose utilization.
    Kang MK; Lee J; Um Y; Lee TS; Bott M; Park SJ; Woo HM
    Appl Microbiol Biotechnol; 2014 Jul; 98(13):5991-6002. PubMed ID: 24706215
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The impact of PHB accumulation on L-glutamate production by recombinant Corynebacterium glutamicum.
    Liu Q; Ouyang SP; Kim J; Chen GQ
    J Biotechnol; 2007 Nov; 132(3):273-9. PubMed ID: 17555841
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enhancement of 1,5-diaminopentane production in a recombinant strain of Corynebacterium glutamicum by Tween 40 addition.
    Matsushima Y; Hirasawa T; Shimizu H
    J Gen Appl Microbiol; 2016; 62(1):42-5. PubMed ID: 26923131
    [No Abstract]   [Full Text] [Related]  

  • 29. Recent advances in the metabolic engineering of Corynebacterium glutamicum for the production of lactate and succinate from renewable resources.
    Tsuge Y; Hasunuma T; Kondo A
    J Ind Microbiol Biotechnol; 2015 Mar; 42(3):375-89. PubMed ID: 25424693
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Production of non-proteinogenic amino acids from α-keto acid precursors with recombinant Corynebacterium glutamicum.
    Kim JY; Lee YA; Wittmann C; Park JB
    Biotechnol Bioeng; 2013 Nov; 110(11):2846-55. PubMed ID: 23737264
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Distinct roles of two anaplerotic pathways in glutamate production induced by biotin limitation in Corynebacterium glutamicum.
    Sato H; Orishimo K; Shirai T; Hirasawa T; Nagahisa K; Shimizu H; Wachi M
    J Biosci Bioeng; 2008 Jul; 106(1):51-8. PubMed ID: 18691531
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Altered metabolic flux due to deletion of odhA causes L-glutamate overproduction in Corynebacterium glutamicum.
    Asakura Y; Kimura E; Usuda Y; Kawahara Y; Matsui K; Osumi T; Nakamatsu T
    Appl Environ Microbiol; 2007 Feb; 73(4):1308-19. PubMed ID: 17158630
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Recent progress in production of amino acid-derived chemicals using Corynebacterium glutamicum.
    Tsuge Y; Matsuzawa H
    World J Microbiol Biotechnol; 2021 Feb; 37(3):49. PubMed ID: 33569648
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Efficient production of glutathione with multi-pathway engineering in Corynebacterium glutamicum.
    Liu W; Zhu X; Lian J; Huang L; Xu Z
    J Ind Microbiol Biotechnol; 2019 Dec; 46(12):1685-1695. PubMed ID: 31420796
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Metabolic engineering for improved production of ethanol by Corynebacterium glutamicum.
    Jojima T; Noburyu R; Sasaki M; Tajima T; Suda M; Yukawa H; Inui M
    Appl Microbiol Biotechnol; 2015 Feb; 99(3):1165-72. PubMed ID: 25421564
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Current knowledge on mycolic acids in Corynebacterium glutamicum and their relevance for biotechnological processes.
    Lanéelle MA; Tropis M; Daffé M
    Appl Microbiol Biotechnol; 2013 Dec; 97(23):9923-30. PubMed ID: 24113823
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Metabolic engineering of Escherichia coli and Corynebacterium glutamicum for the production of L-threonine.
    Dong X; Quinn PJ; Wang X
    Biotechnol Adv; 2011; 29(1):11-23. PubMed ID: 20688145
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Recent advances of pH homeostasis mechanisms in Corynebacterium glutamicum.
    Guo J; Ma Z; Gao J; Zhao J; Wei L; Liu J; Xu N
    World J Microbiol Biotechnol; 2019 Nov; 35(12):192. PubMed ID: 31773365
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Metabolically engineered Corynebacterium glutamicum for bio-based production of chemicals, fuels, materials, and healthcare products.
    Becker J; Rohles CM; Wittmann C
    Metab Eng; 2018 Nov; 50():122-141. PubMed ID: 30031852
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Microbial metabolic engineering for L-threonine production.
    Dong X; Quinn PJ; Wang X
    Subcell Biochem; 2012; 64():283-302. PubMed ID: 23080256
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.