BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

464 related articles for article (PubMed ID: 23080256)

  • 1. Microbial metabolic engineering for L-threonine production.
    Dong X; Quinn PJ; Wang X
    Subcell Biochem; 2012; 64():283-302. PubMed ID: 23080256
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic engineering of Escherichia coli and Corynebacterium glutamicum for the production of L-threonine.
    Dong X; Quinn PJ; Wang X
    Biotechnol Adv; 2011; 29(1):11-23. PubMed ID: 20688145
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Production of L-valine from metabolically engineered Corynebacterium glutamicum.
    Wang X; Zhang H; Quinn PJ
    Appl Microbiol Biotechnol; 2018 May; 102(10):4319-4330. PubMed ID: 29594358
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic pathways and fermentative production of L-aspartate family amino acids.
    Park JH; Lee SY
    Biotechnol J; 2010 Jun; 5(6):560-77. PubMed ID: 20518059
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of metabolic engineering for the biotechnological production of L-valine.
    Oldiges M; Eikmanns BJ; Blombach B
    Appl Microbiol Biotechnol; 2014 Jul; 98(13):5859-70. PubMed ID: 24816722
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic engineering of Corynebacterium glutamicum strain ATCC13032 to produce L-methionine.
    Qin T; Hu X; Hu J; Wang X
    Biotechnol Appl Biochem; 2015; 62(4):563-73. PubMed ID: 25196586
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic engineering of Corynebacterium glutamicum for the production of L-ornithine.
    Kim SY; Lee J; Lee SY
    Biotechnol Bioeng; 2015 Feb; 112(2):416-21. PubMed ID: 25163446
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of aspartate kinase and homoserine dehydrogenase from Corynebacterium glutamicum IWJ001 and systematic investigation of L-isoleucine biosynthesis.
    Dong X; Zhao Y; Zhao J; Wang X
    J Ind Microbiol Biotechnol; 2016 Jun; 43(6):873-85. PubMed ID: 27033538
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic engineering of l-leucine production in Escherichia coli and Corynebacterium glutamicum: a review.
    Wang YY; Xu JZ; Zhang WG
    Crit Rev Biotechnol; 2019 Aug; 39(5):633-647. PubMed ID: 31055970
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strategy for improving L-isoleucine production efficiency in Corynebacterium glutamicum.
    Wang X
    Appl Microbiol Biotechnol; 2019 Mar; 103(5):2101-2111. PubMed ID: 30663007
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Attenuating l-lysine production by deletion of ddh and lysE and their effect on l-threonine and l-isoleucine production in Corynebacterium glutamicum.
    Dong X; Zhao Y; Hu J; Li Y; Wang X
    Enzyme Microb Technol; 2016 Nov; 93-94():70-78. PubMed ID: 27702487
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integration of systems biology with bioprocess engineering: L: -threonine production by systems metabolic engineering of Escherichia coli.
    Lee SY; Park JH
    Adv Biochem Eng Biotechnol; 2010; 120():1-19. PubMed ID: 20140658
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Activity of exporters of Escherichia coli in Corynebacterium glutamicum, and their use to increase L-threonine production.
    Diesveld R; Tietze N; Fürst O; Reth A; Bathe B; Sahm H; Eggeling L
    J Mol Microbiol Biotechnol; 2009; 16(3-4):198-207. PubMed ID: 18594129
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Systems-wide metabolic pathway engineering in Corynebacterium glutamicum for bio-based production of diaminopentane.
    Kind S; Jeong WK; Schröder H; Wittmann C
    Metab Eng; 2010 Jul; 12(4):341-51. PubMed ID: 20381632
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic engineering of Escherichia coli and Corynebacterium glutamicum for biotechnological production of organic acids and amino acids.
    Wendisch VF; Bott M; Eikmanns BJ
    Curr Opin Microbiol; 2006 Jun; 9(3):268-74. PubMed ID: 16617034
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved fermentative production of the compatible solute ectoine by Corynebacterium glutamicum from glucose and alternative carbon sources.
    Pérez-García F; Ziert C; Risse JM; Wendisch VF
    J Biotechnol; 2017 Sep; 258():59-68. PubMed ID: 28478080
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent Advances in Metabolic Engineering for the Biosynthesis of Phosphoenol Pyruvate-Oxaloacetate-Pyruvate-Derived Amino Acids.
    Yin L; Zhou Y; Ding N; Fang Y
    Molecules; 2024 Jun; 29(12):. PubMed ID: 38930958
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Current status on metabolic engineering for the production of l-aspartate family amino acids and derivatives.
    Li Y; Wei H; Wang T; Xu Q; Zhang C; Fan X; Ma Q; Chen N; Xie X
    Bioresour Technol; 2017 Dec; 245(Pt B):1588-1602. PubMed ID: 28579173
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A propionate-inducible expression system based on the Corynebacterium glutamicum prpD2 promoter and PrpR activator and its application for the redirection of amino acid biosynthesis pathways.
    Plassmeier JK; Busche T; Molck S; Persicke M; Pühler A; Rückert C; Kalinowski J
    J Biotechnol; 2013 Jan; 163(2):225-32. PubMed ID: 22982516
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved succinate production in Corynebacterium glutamicum by engineering glyoxylate pathway and succinate export system.
    Zhu N; Xia H; Yang J; Zhao X; Chen T
    Biotechnol Lett; 2014 Mar; 36(3):553-60. PubMed ID: 24129953
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.