BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 23080257)

  • 21. Improvement of coenzyme Q10 production: mutagenesis induced by high hydrostatic pressure treatment and optimization of fermentation conditions.
    Yuan Y; Tian Y; Yue T
    J Biomed Biotechnol; 2012; 2012():607329. PubMed ID: 23091351
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Combining in silico and in vitro approaches to understand the involvement of methylerythritol 4-phosphate and shikimate pathways in Agrobacterium tumefaciens for enhanced coenzyme Q10 production.
    Yadav K; Arora D; Jatain I; Dubey KK; Dhaka N; Kaur I; Adlakha N
    J Appl Microbiol; 2023 May; 134(5):. PubMed ID: 37160352
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Metabolic control of respiratory levels in coenzyme Q biosynthesis-deficient Escherichia coli strains leading to fine-tune aerobic lactate fermentation.
    Wu H; Bennett GN; San KY
    Biotechnol Bioeng; 2015 Aug; 112(8):1720-6. PubMed ID: 25788153
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Metabolic engineering of Escherichia coli for biotechnological production of high-value organic acids and alcohols.
    Yu C; Cao Y; Zou H; Xian M
    Appl Microbiol Biotechnol; 2011 Feb; 89(3):573-83. PubMed ID: 21052988
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Improving production of aromatic compounds in Escherichia coli by metabolic engineering.
    Berry A
    Trends Biotechnol; 1996 Jul; 14(7):250-6. PubMed ID: 8771798
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Engineering Escherichia coli for an efficient aerobic fermentation platform.
    Kang Z; Geng Y; Xia Yz; Kang J; Qi Q
    J Biotechnol; 2009 Oct; 144(1):58-63. PubMed ID: 19563847
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mutagenesis of Rhodobacter sphaeroides using atmospheric and room temperature plasma treatment for efficient production of coenzyme Q10.
    Zou RS; Li S; Zhang LL; Zhang C; Han YJ; Gao G; Sun X; Gong X
    J Biosci Bioeng; 2019 Jun; 127(6):698-702. PubMed ID: 30709705
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sugar transporters in efficient utilization of mixed sugar substrates: current knowledge and outlook.
    Jojima T; Omumasaba CA; Inui M; Yukawa H
    Appl Microbiol Biotechnol; 2010 Jan; 85(3):471-80. PubMed ID: 19838697
    [TBL] [Abstract][Full Text] [Related]  

  • 29. 1,3-Propanediol production by new recombinant Escherichia coli containing genes from pathogenic bacteria.
    Przystałowska H; Zeyland J; Szymanowska-Powałowska D; Szalata M; Słomski R; Lipiński D
    Microbiol Res; 2015 Feb; 171():1-7. PubMed ID: 25644946
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Coenzyme Q10 production in a 150-l reactor by a mutant strain of Rhodobacter sphaeroides.
    Kien NB; Kong IS; Lee MG; Kim JK
    J Ind Microbiol Biotechnol; 2010 May; 37(5):521-9. PubMed ID: 20195885
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Optimization of culture conditions and scale-up to pilot and plant scales for coenzyme Q10 production by Agrobacterium tumefaciens.
    Ha SJ; Kim SY; Seo JH; Oh DK; Lee JK
    Appl Microbiol Biotechnol; 2007 Apr; 74(5):974-80. PubMed ID: 17124579
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Programming Saposin-Mediated Compensatory Metabolic Sinks for Enhanced Ubiquinone Production.
    Xu W; Yuan J; Yang S; Ching CB; Liu J
    ACS Synth Biol; 2016 Dec; 5(12):1404-1411. PubMed ID: 27389347
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Introducing a thermotolerant Gluconobacter japonicus strain, potentially useful for coenzyme Q
    Moghadami F; Fooladi J; Hosseini R
    Folia Microbiol (Praha); 2019 Jul; 64(4):471-479. PubMed ID: 30680590
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Tobacco biomass hydrolysate enhances coenzyme Q10 production using photosynthetic Rhodospirillum rubrum.
    Tian Y; Yue T; Yuan Y; Soma PK; Williams PD; Machado PA; Fu H; Kratochvil RJ; Wei CI; Lo YM
    Bioresour Technol; 2010 Oct; 101(20):7877-81. PubMed ID: 20554198
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Coenzyme Q10 and statin-related myopathy.
    Drug Ther Bull; 2015 May; 53(5):54-6. PubMed ID: 25977402
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mechanism of the neuroprotective role of coenzyme Q10 with or without L-dopa in rotenone-induced parkinsonism.
    Abdin AA; Hamouda HE
    Neuropharmacology; 2008 Dec; 55(8):1340-6. PubMed ID: 18817789
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Coenzyme Q10 prevents high glucose-induced oxidative stress in human umbilical vein endothelial cells.
    Tsuneki H; Sekizaki N; Suzuki T; Kobayashi S; Wada T; Okamoto T; Kimura I; Sasaoka T
    Eur J Pharmacol; 2007 Jul; 566(1-3):1-10. PubMed ID: 17434478
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enhanced production of coenzyme Q10 by self-regulating the engineered MEP pathway in Rhodobacter sphaeroides.
    Lu W; Ye L; Xu H; Xie W; Gu J; Yu H
    Biotechnol Bioeng; 2014 Apr; 111(4):761-9. PubMed ID: 24122603
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Efficient production of polylactic acid and its copolymers by metabolically engineered Escherichia coli.
    Jung YK; Lee SY
    J Biotechnol; 2011 Jan; 151(1):94-101. PubMed ID: 21111011
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Elucidation of molecular mechanism involved in neuroprotective effect of Coenzyme Q10 in alcohol-induced neuropathic pain.
    Kandhare AD; Ghosh P; Ghule AE; Bodhankar SL
    Fundam Clin Pharmacol; 2013 Dec; 27(6):603-22. PubMed ID: 23057828
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.