These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 23080354)

  • 1. Thermo-optic control of dielectric-loaded plasmonic Mach-Zehnder interferometers and directional coupler switches.
    Gosciniak J; Markey L; Dereux A; Bozhevolnyi SI
    Nanotechnology; 2012 Nov; 23(44):444008. PubMed ID: 23080354
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermo-optic control of dielectric-loaded plasmonic waveguide components.
    Gosciniak J; Bozhevolnyi SI; Andersen TB; Volkov VS; Kjelstrup-Hansen J; Markey L; Dereux A
    Opt Express; 2010 Jan; 18(2):1207-16. PubMed ID: 20173944
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultra-wideband high-speed Mach-Zehnder switch based on hybrid plasmonic waveguides.
    Janjan B; Fathi D; Miri M; Ghaffari-Miab M
    Appl Opt; 2017 Feb; 56(6):1717-1723. PubMed ID: 28234374
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Directional coupler and nonlinear Mach-Zehnder interferometer based on metal-insulator-metal plasmonic waveguide.
    Pu M; Yao N; Hu C; Xin X; Zhao Z; Wang C; Luo X
    Opt Express; 2010 Sep; 18(20):21030-7. PubMed ID: 20940998
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two-dimensional design and analysis of trench-coupler based Silicon Mach-Zehnder thermo-optic switch.
    Liu K; Zhang C; Mu S; Wang S; Sorger VJ
    Opt Express; 2016 Jul; 24(14):15845-53. PubMed ID: 27410854
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low-loss and broadband 2 × 2 silicon thermo-optic Mach-Zehnder switch with bent directional couplers.
    Chen S; Shi Y; He S; Dai D
    Opt Lett; 2016 Feb; 41(4):836-9. PubMed ID: 26872201
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Submilliwatt thermo-optic switches using free-standing silicon-on-insulator strip waveguides.
    Sun P; Reano RM
    Opt Express; 2010 Apr; 18(8):8406-11. PubMed ID: 20588686
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low-crosstalk 2 x 2 thermo-optic switch with silicon wire waveguides.
    Shoji Y; Kintaka K; Suda S; Kawashima H; Hasama T; Ishikawa H
    Opt Express; 2010 Apr; 18(9):9071-5. PubMed ID: 20588754
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultracompact photonic-waveguide circuits in Si-pillar photonic-crystal structures for integrated nanophotonic switches.
    Tokushima M; Olmos JJ; Kitayama K
    J Nanosci Nanotechnol; 2010 Mar; 10(3):1626-34. PubMed ID: 20355549
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Directional coupling in long-range dielectric-loaded plasmonic waveguides.
    Zenin VA; Han Z; Volkov VS; Leosson K; Radko IP; Bozhevolnyi SI
    Opt Express; 2013 Apr; 21(7):8799-807. PubMed ID: 23571969
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low-power 2×2 silicon electro-optic switches based on double-ring assisted Mach-Zehnder interferometers.
    Lu L; Zhou L; Li X; Chen J
    Opt Lett; 2014 Mar; 39(6):1633-6. PubMed ID: 24690856
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theoretical investigation of compact couplers between dielectric slab waveguides and two-dimensional metal-dielectric-metal plasmonic waveguides.
    Veronis G; Fan S
    Opt Express; 2007 Feb; 15(3):1211-21. PubMed ID: 19532350
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low-cross-talk and thermo-insensitive CWDM (de)multiplexer assisted with compact MZIs and slot waveguides.
    Zou Y; Lin Z; He S
    Appl Opt; 2023 Nov; 62(33):8931-8938. PubMed ID: 38038040
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Components for silicon plasmonic nanocircuits based on horizontal Cu-SiO₂-Si-SiO₂-Cu nanoplasmonic waveguides.
    Zhu S; Lo GQ; Kwong DL
    Opt Express; 2012 Mar; 20(6):5867-81. PubMed ID: 22418464
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toward integrated electrically controllable directional coupling based on dielectric loaded graphene plasmonic waveguide.
    Xu W; Zhu ZH; Liu K; Zhang JF; Yuan XD; Lu QS; Qin SQ
    Opt Lett; 2015 Apr; 40(7):1603-6. PubMed ID: 25831395
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Compact wavelength add-drop multiplexers using Bragg gratings in coupled dielectric-loaded plasmonic waveguides.
    Biagi G; Fiutowski J; Radko IP; Rubahn HG; Pedersen K; Bozhevolnyi SI
    Opt Lett; 2015 May; 40(10):2429-32. PubMed ID: 26393757
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Compact and low power thermo-optic switch using folded silicon waveguides.
    Densmore A; Janz S; Ma R; Schmid JH; Xu DX; Delâge A; Lapointe J; Vachon M; Cheben P
    Opt Express; 2009 Jun; 17(13):10457-65. PubMed ID: 19550441
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermo-optic mode extinction modulator based on graphene plasmonic waveguide.
    Kim JT; Chung KH; Choi CG
    Opt Express; 2013 Jul; 21(13):15280-6. PubMed ID: 23842314
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structurally-tolerant vertical directional coupling between metal-insulator-metal plasmonic waveguide and silicon dielectric waveguide.
    Li Q; Qiu M
    Opt Express; 2010 Jul; 18(15):15531-43. PubMed ID: 20720933
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Compact and low insertion loss (approximately 1.0 dB) Mach- Zehnder interferometer-synchronized arrayed-waveguide grating multiplexer with flat-top frequency response.
    Shibata T; Kamei S; Kitoh T; Tanaka T; Kohtoku M
    Opt Express; 2008 Oct; 16(21):16546-51. PubMed ID: 18852763
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.