These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 23080525)

  • 1. Analysis of simulated fluorescence intensities decays by a new maximum entropy method algorithm.
    Esposito R; Altucci C; Velotta R
    J Fluoresc; 2013 Jan; 23(1):203-11. PubMed ID: 23080525
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved maximum entropy method for the analysis of fluorescence spectroscopy data: evaluating zero-time shift and assessing its effect on the determination of fluorescence lifetimes.
    Esposito R; Mensitieri G; de Nicola S
    Analyst; 2015 Dec; 140(24):8138-47. PubMed ID: 26541293
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Maximum entropy method for frequency-domain fluorescence lifetime analysis. 2. Timing, mismatched intensity, and reference lifetime errors.
    Shaver JM; McGown LB
    Anal Chem; 1996 Feb; 68(4):611-20. PubMed ID: 8999738
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Maximum entropy analysis of analytically simulated complex fluorescence decays.
    Vecer J; Herman P
    J Fluoresc; 2011 May; 21(3):873-81. PubMed ID: 20066479
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of method of moments analysis to fluorescence decay lifetime distributions.
    Libertini LJ; Small EW
    Biophys Chem; 1989 Nov; 34(3):269-82. PubMed ID: 2611350
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of kinetics using a hybrid maximum-entropy/nonlinear-least-squares method: application to protein folding.
    Steinbach PJ; Ionescu R; Matthews CR
    Biophys J; 2002 Apr; 82(4):2244-55. PubMed ID: 11916879
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Filtering artifacts from lifetime distributions when maximizing entropy using a bootstrapped model.
    Steinbach PJ
    Anal Biochem; 2012 Aug; 427(1):102-5. PubMed ID: 22504734
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Resolvability of fluorescence lifetime distributions using phase fluorometry.
    Alcala JR; Gratton E; Prendergast FG
    Biophys J; 1987 Apr; 51(4):587-96. PubMed ID: 3580485
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Maximum entropy method for frequency domain fluorescence lifetime analysis. 1. Effects of frequency range and random noise.
    Shaver JM; McGown LB
    Anal Chem; 1996 Jan; 68(1):9-17. PubMed ID: 21619219
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of heterogeneous fluorescence decays. Distribution of pyrene derivatives in an octadecylsilane layer in capillary electrochromatography.
    He Y; Geng L
    Anal Chem; 2001 Nov; 73(22):5564-75. PubMed ID: 11816589
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Methods for the analysis of complex fluorescence decays: sum of Becquerel functions versus sum of exponentials.
    Menezes F; Fedorov A; Baleizão C; Valeur B; Berberan-Santos MN
    Methods Appl Fluoresc; 2013 Jan; 1(1):015002. PubMed ID: 29148435
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of heterogeneous fluorescence decays in proteins. Using fluorescence lifetime of 8-anilino-1-naphthalenesulfonate to probe apomyoglobin unfolding at equilibrium.
    Wang G; Gao Y; Geng ML
    Biochim Biophys Acta; 2006 Jul; 1760(7):1125-37. PubMed ID: 16730413
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monitoring membrane protein conformational heterogeneity by fluorescence lifetime distribution analysis using the maximum entropy method.
    Haldar S; Kombrabail M; Krishnamoorthy G; Chattopadhyay A
    J Fluoresc; 2010 Jan; 20(1):407-13. PubMed ID: 19816758
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Feasibility analysis of an epidermal glucose sensor based on time-resolved fluorescence.
    Katika KM; Pilon L
    Appl Opt; 2007 Jun; 46(16):3359-68. PubMed ID: 17514294
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Maximum Entropy Technique and Regularization Functional for Determining the Pharmacokinetic Parameters in DCE-MRI.
    Amini Farsani Z; Schmid VJ
    J Digit Imaging; 2022 Oct; 35(5):1176-1188. PubMed ID: 35618849
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extraction of lifetime distributions from fluorescence decays with application to DNA-base analogues.
    Fogarty AC; Jones AC; Camp PJ
    Phys Chem Chem Phys; 2011 Mar; 13(9):3819-30. PubMed ID: 21212896
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measuring size distribution in highly heterogeneous systems with fluorescence correlation spectroscopy.
    Sengupta P; Garai K; Balaji J; Periasamy N; Maiti S
    Biophys J; 2003 Mar; 84(3):1977-84. PubMed ID: 12609900
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Delving into Membrane Heterogeneity Utilizing Fluorescence Lifetime Distribution Analysis.
    Haldar S
    J Membr Biol; 2022 Oct; 255(4-5):553-561. PubMed ID: 35486159
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spectroscopic studies on human serum albumin and methemalbumin: optical, steady-state, and picosecond time-resolved fluorescence studies, and kinetics of substrate oxidation by methemalbumin.
    Kamal JK; Behere DV
    J Biol Inorg Chem; 2002 Mar; 7(3):273-83. PubMed ID: 11935351
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two-dimensional fluorescence lifetime correlation spectroscopy. 2. Application.
    Ishii K; Tahara T
    J Phys Chem B; 2013 Oct; 117(39):11423-32. PubMed ID: 23977902
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.