BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

338 related articles for article (PubMed ID: 23081664)

  • 1. TGF-β-superfamily signaling regulates embryonic stem cell heterogeneity: self-renewal as a dynamic and regulated equilibrium.
    Galvin-Burgess KE; Travis ED; Pierson KE; Vivian JL
    Stem Cells; 2013 Jan; 31(1):48-58. PubMed ID: 23081664
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nodal signaling regulates the bone morphogenic protein pluripotency pathway in mouse embryonic stem cells.
    Galvin KE; Travis ED; Yee D; Magnuson T; Vivian JL
    J Biol Chem; 2010 Jun; 285(26):19747-56. PubMed ID: 20427282
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Smad2 is essential for maintenance of the human and mouse primed pluripotent stem cell state.
    Sakaki-Yumoto M; Liu J; Ramalho-Santos M; Yoshida N; Derynck R
    J Biol Chem; 2013 Jun; 288(25):18546-60. PubMed ID: 23649632
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transforming growth factor-beta superfamily in mouse embryonic stem cell self-renewal.
    Galvin-Burgess KE; Vivian JL
    Vitam Horm; 2011; 87():341-65. PubMed ID: 22127250
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activin-Nodal signaling is involved in propagation of mouse embryonic stem cells.
    Ogawa K; Saito A; Matsui H; Suzuki H; Ohtsuka S; Shimosato D; Morishita Y; Watabe T; Niwa H; Miyazono K
    J Cell Sci; 2007 Jan; 120(Pt 1):55-65. PubMed ID: 17182901
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Suppression of TGF-β and ERK Signaling Pathways as a New Strategy to Provide Rodent and Non-Rodent Pluripotent Stem Cells.
    Farzaneh M; Derakhshan Z; Hallajzadeh J; Sarani NH; Nejabatdoust A; Khoshnam SE
    Curr Stem Cell Res Ther; 2019; 14(6):466-473. PubMed ID: 30868962
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NANOG is a direct target of TGFbeta/activin-mediated SMAD signaling in human ESCs.
    Xu RH; Sampsell-Barron TL; Gu F; Root S; Peck RM; Pan G; Yu J; Antosiewicz-Bourget J; Tian S; Stewart R; Thomson JA
    Cell Stem Cell; 2008 Aug; 3(2):196-206. PubMed ID: 18682241
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Patterning of mouse embryonic stem cell-derived pan-mesoderm by Activin A/Nodal and Bmp4 signaling requires Fibroblast Growth Factor activity.
    Willems E; Leyns L
    Differentiation; 2008 Sep; 76(7):745-59. PubMed ID: 18177426
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CHIR99021 promotes self-renewal of mouse embryonic stem cells by modulation of protein-encoding gene and long intergenic non-coding RNA expression.
    Wu Y; Ai Z; Yao K; Cao L; Du J; Shi X; Guo Z; Zhang Y
    Exp Cell Res; 2013 Oct; 319(17):2684-99. PubMed ID: 24021571
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activin A maintains self-renewal and regulates fibroblast growth factor, Wnt, and bone morphogenic protein pathways in human embryonic stem cells.
    Xiao L; Yuan X; Sharkis SJ
    Stem Cells; 2006 Jun; 24(6):1476-86. PubMed ID: 16456129
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The combination of inhibitors of FGF/MEK/Erk and GSK3β signaling increases the number of OCT3/4- and NANOG-positive cells in the human inner cell mass, but does not improve stem cell derivation.
    Van der Jeught M; O'Leary T; Ghimire S; Lierman S; Duggal G; Versieren K; Deforce D; Chuva de Sousa Lopes S; Heindryckx B; De Sutter P
    Stem Cells Dev; 2013 Jan; 22(2):296-306. PubMed ID: 22784186
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanog and transcriptional networks in embryonic stem cell pluripotency.
    Pan G; Thomson JA
    Cell Res; 2007 Jan; 17(1):42-9. PubMed ID: 17211451
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Activin/Nodal signalling maintains pluripotency by controlling Nanog expression.
    Vallier L; Mendjan S; Brown S; Chng Z; Teo A; Smithers LE; Trotter MW; Cho CH; Martinez A; Rugg-Gunn P; Brons G; Pedersen RA
    Development; 2009 Apr; 136(8):1339-49. PubMed ID: 19279133
    [TBL] [Abstract][Full Text] [Related]  

  • 14. BMP-11 and myostatin support undifferentiated growth of human embryonic stem cells in feeder-free cultures.
    Hannan NR; Jamshidi P; Pera MF; Wolvetang EJ
    Cloning Stem Cells; 2009 Sep; 11(3):427-35. PubMed ID: 19751112
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aromatic residues in the C-terminal domain 2 are required for Nanog to mediate LIF-independent self-renewal of mouse embryonic stem cells.
    Wang Z; Ma T; Chi X; Pei D
    J Biol Chem; 2008 Feb; 283(8):4480-9. PubMed ID: 18086680
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combinatorial signals of activin/nodal and bone morphogenic protein regulate the early lineage segregation of human embryonic stem cells.
    Wu Z; Zhang W; Chen G; Cheng L; Liao J; Jia N; Gao Y; Dai H; Yuan J; Cheng L; Xiao L
    J Biol Chem; 2008 Sep; 283(36):24991-5002. PubMed ID: 18596037
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Roles of TGF-β family signals in the fate determination of pluripotent stem cells.
    Itoh F; Watabe T; Miyazono K
    Semin Cell Dev Biol; 2014 Aug; 32():98-106. PubMed ID: 24910449
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiple roles of Activin/Nodal, bone morphogenetic protein, fibroblast growth factor and Wnt/β-catenin signalling in the anterior neural patterning of adherent human embryonic stem cell cultures.
    Lupo G; Novorol C; Smith JR; Vallier L; Miranda E; Alexander M; Biagioni S; Pedersen RA; Harris WA
    Open Biol; 2013 Apr; 3(4):120167. PubMed ID: 23576785
    [TBL] [Abstract][Full Text] [Related]  

  • 19. FGF stimulation of the Erk1/2 signalling cascade triggers transition of pluripotent embryonic stem cells from self-renewal to lineage commitment.
    Kunath T; Saba-El-Leil MK; Almousailleakh M; Wray J; Meloche S; Smith A
    Development; 2007 Aug; 134(16):2895-902. PubMed ID: 17660198
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of the role of bone morphogenetic protein (BMP) and transforming growth factor-β (TGF-β) signaling in the trajectory of serotonergic differentiation in a rapid assay in mouse embryonic stem cells in vitro.
    Yamasaki A; Kasai A; Toi A; Kurita M; Kimoto S; Hayata-Takano A; Nakazawa T; Nagayasu K; Shintani N; Hashimoto R; Ito A; Meltzer HY; Ago Y; Waschek JA; Onaka Y; Matsuda T; Baba A; Hashimoto H
    J Neurochem; 2015 Feb; 132(4):418-28. PubMed ID: 25421849
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.