These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 23081706)

  • 1. Changing the enzyme reaction rate in magnetic nanosuspensions by a non-heating magnetic field.
    Klyachko NL; Sokolsky-Papkov M; Pothayee N; Efremova MV; Gulin DA; Pothayee N; Kuznetsov AA; Majouga AG; Riffle JS; Golovin YI; Kabanov AV
    Angew Chem Int Ed Engl; 2012 Nov; 51(48):12016-9. PubMed ID: 23081706
    [No Abstract]   [Full Text] [Related]  

  • 2. Enzyme-functionalized gold-coated magnetite nanoparticles as novel hybrid nanomaterials: synthesis, purification and control of enzyme function by low-frequency magnetic field.
    Majouga A; Sokolsky-Papkov M; Kuznetsov A; Lebedev D; Efremova M; Beloglazkina E; Rudakovskaya P; Veselov M; Zyk N; Golovin Y; Klyachko N; Kabanov A
    Colloids Surf B Biointerfaces; 2015 Jan; 125():104-9. PubMed ID: 25460600
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stabilization of alpha-chymotrypsin by covalent immobilization on amine-functionalized superparamagnetic nanogel.
    Hong J; Gong P; Xu D; Dong L; Yao S
    J Biotechnol; 2007 Feb; 128(3):597-605. PubMed ID: 17175056
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magnetic Cross-Linked Enzyme Aggregates of Aspergillus oryzae ST11 Lipase Using Polyacrylonitrile Coated Magnetic Nanoparticles for Biodiesel Production.
    Paitaid P; H-Kittikun A
    Appl Biochem Biotechnol; 2020 Apr; 190(4):1319-1332. PubMed ID: 31754983
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Site-specific immobilization of enzymes on magnetic nanoparticles and their use in organic synthesis.
    Yu CC; Kuo YY; Liang CF; Chien WT; Wu HT; Chang TC; Jan FD; Lin CC
    Bioconjug Chem; 2012 Apr; 23(4):714-24. PubMed ID: 22424277
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improvement of Protein Immobilization and Bioactivity of Magnetic Carriers Using a Brushed Beads-on-Beads Structure.
    Wang P; Xu P; Wang P; Deng L; Gu H; Xu H
    ACS Appl Mater Interfaces; 2015 Nov; 7(44):24390-5. PubMed ID: 26517181
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Production of Galactooligosaccharides Using β-Galactosidase Immobilized on Chitosan-Coated Magnetic Nanoparticles with Tris(hydroxymethyl)phosphine as an Optional Coupling Agent.
    Chen SC; Duan KJ
    Int J Mol Sci; 2015 Jun; 16(6):12499-512. PubMed ID: 26047337
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Magnetic enzyme nanogel (MENG): a universal synthetic route for biocatalysts.
    Lin M; Lu D; Zhu J; Yang C; Zhang Y; Liu Z
    Chem Commun (Camb); 2012 Apr; 48(27):3315-7. PubMed ID: 22362334
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In Situ Observation of Chymotrypsin Catalytic Activity Change Actuated by Nonheating Low-Frequency Magnetic Field.
    Efremova MV; Veselov MM; Barulin AV; Gribanovsky SL; Le-Deygen IM; Uporov IV; Kudryashova EV; Sokolsky-Papkov M; Majouga AG; Golovin YI; Kabanov AV; Klyachko NL
    ACS Nano; 2018 Apr; 12(4):3190-3199. PubMed ID: 29570975
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrophilic spacer-arm containing magnetic nanoparticles for immobilization of proteinase K: Employment for speciation of proteins for mass spectrometry-based analysis.
    Bayramoglu G; Kayili HM; Oztekin M; Salih B; Arica MY
    Talanta; 2020 Jan; 206():120218. PubMed ID: 31514867
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Latex particles with thermo-flocculation and magnetic properties for immobilization of alpha-chymotrypsin.
    Chen JP; Su DR
    Biotechnol Prog; 2001; 17(2):369-75. PubMed ID: 11312718
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Phase transition in the matrix as a regulator of enzymatic activity of proteinases].
    Eremeev NL; Kazanskaia NF
    Bioorg Khim; 1998 May; 24(5):356-63. PubMed ID: 9661789
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetic analysis of deactivation of immobilized alpha-chymotrypsin by water-miscible organic solvent in kyotorphin synthesis.
    Levitsky VY; Lozano P; Iborra JL
    Biotechnol Bioeng; 1999 Oct; 65(2):170-5. PubMed ID: 10458737
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magneto-controlled enzyme reactions.
    Bollella P; Katz E
    Methods Enzymol; 2020; 630():1-24. PubMed ID: 31931981
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PEG modification enhances the in vivo stability of bioactive proteins immobilized on magnetic nanoparticles.
    Xu Q; Hou J; Rao J; Li GH; Liu YL; Zhou J
    Biotechnol Lett; 2020 Aug; 42(8):1407-1418. PubMed ID: 32200524
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Xylanase immobilization on modified superparamagnetic graphene oxide nanocomposite: Effect of PEGylation on activity and stability.
    Mehnati-Najafabadi V; Taheri-Kafrani A; Bordbar AK
    Int J Biol Macromol; 2018 Feb; 107(Pt A):418-425. PubMed ID: 28888544
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relaxivity control of magnetic nanoclusters for efficient magnetic relaxation switching assay.
    Cha J; Kwon YS; Yoon TJ; Lee JK
    Chem Commun (Camb); 2013 Jan; 49(5):457-9. PubMed ID: 23100091
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Poly(acrylic acid) nanogel as a substrate for cellulase immobilization for hydrolysis of cellulose.
    Ahmed IN; Chang R; Tsai WB
    Colloids Surf B Biointerfaces; 2017 Apr; 152():339-343. PubMed ID: 28131958
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Xylanase Immobilized on Novel Multifunctional Hyperbranched Polyglycerol-Grafted Magnetic Nanoparticles: An Efficient and Robust Biocatalyst.
    Landarani-Isfahani A; Taheri-Kafrani A; Amini M; Mirkhani V; Moghadam M; Soozanipour A; Razmjou A
    Langmuir; 2015 Aug; 31(33):9219-27. PubMed ID: 26258956
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of magnetic nanoparticles functionalized with histidine and nickel to immobilize His-tagged enzymes using β-galactosidase as a model.
    de Andrade BC; Gennari A; Renard G; Nervis BDR; Benvenutti EV; Costa TMH; Nicolodi S; da Silveira NP; Chies JM; Volpato G; Volken de Souza CF
    Int J Biol Macromol; 2021 Aug; 184():159-169. PubMed ID: 34126150
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.