These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 23081717)

  • 21. Experience with a new OR dedicated to robotic surgery.
    Autschbach R; Falk V; Stein H; Mohr FW
    Minim Invasive Ther Allied Technol; 2000; 9(3-4):213-7. PubMed ID: 20156017
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Development of actuated and sensor integrated forceps for minimally invasive robotic surger.
    Kuebler B; Seibold U; Hirzinger G
    Int J Med Robot; 2005 Sep; 1(3):96-107. PubMed ID: 17518396
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Robotic stabilization that assists cardiac surgery on beating hearts.
    Nakamura Y; Kishi K
    Stud Health Technol Inform; 2001; 81():355-61. PubMed ID: 11317768
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Endoscopic vision-based tracking of multiple surgical instruments during robot-assisted surgery.
    Ryu J; Choi J; Kim HC
    Artif Organs; 2013 Jan; 37(1):107-12. PubMed ID: 23043484
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An improved surgical instrument without coupled motions that can be used in robotic-assisted minimally invasive surgery.
    Mei F; Yili F; Bo P; Xudong Z
    Proc Inst Mech Eng H; 2012 Aug; 226(8):623-30. PubMed ID: 23057235
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Improved surgical instruments without coupled motion used in minimally invasive surgery.
    Niu G; Pan B; Zhang F; Feng H; Fu Y
    Int J Med Robot; 2018 Dec; 14(6):e1942. PubMed ID: 30058772
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Compact forceps manipulator using friction wheel mechanism and gimbals mechanism for laparoscopic surgery.
    Suzuki T; Katayama Y; Kobayashi E; Sakuma I
    Med Image Comput Comput Assist Interv; 2005; 8(Pt 2):81-8. PubMed ID: 16685946
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Breakthrough: robotic surgery. How robots are transforming minimally invasive surgical procedures.
    Harv Womens Health Watch; 2012 Nov; 20(3):1, 7. PubMed ID: 23326903
    [No Abstract]   [Full Text] [Related]  

  • 29. ARTEMIS. A telemanipulator for cardiac surgery.
    Rininsland H
    Eur J Cardiothorac Surg; 1999 Nov; 16 Suppl 2():S106-11. PubMed ID: 10613569
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A technical challenge for robot-assisted minimally invasive surgery: precision surgery on soft tissue.
    Stallkamp J; Schraft RD
    Int J Med Robot; 2005 Jan; 1(2):48-52. PubMed ID: 17518378
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Robotic-surgical instrument wrist pose estimation.
    Fabel S; Baek K; Berkelman P
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():971-4. PubMed ID: 21096983
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Gaze-contingent control for minimally invasive robotic surgery.
    Mylonas GP; Darzi A; Yang GZ
    Comput Aided Surg; 2006 Sep; 11(5):256-66. PubMed ID: 17127651
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microsurgical robotic system for vitreoretinal surgery.
    Ida Y; Sugita N; Ueta T; Tamaki Y; Tanimoto K; Mitsuishi M
    Int J Comput Assist Radiol Surg; 2012 Jan; 7(1):27-34. PubMed ID: 21573828
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Lapabot: a compact telesurgical robot system for minimally invasive surgery: part II. Telesurgery evaluation.
    Park JW; Lee DH; Kim YW; Lee BH; Jo YH
    Minim Invasive Ther Allied Technol; 2012 May; 21(3):195-200. PubMed ID: 21815881
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Spherical mechanism analysis of a surgical robot for minimally invasive surgery -- analytical and experimental approaches.
    Rosen J; Lum M; Trimble D; Hannaford B; Sinanan M
    Stud Health Technol Inform; 2005; 111():422-8. PubMed ID: 15718772
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electromagnetic navigation improves minimally invasive robot-assisted lung brachytherapy.
    Lin AW; Trejos AL; Mohan S; Bassan H; Kashigar A; Patel RV; Malthaner RA
    Comput Aided Surg; 2008 Mar; 13(2):114-23. PubMed ID: 18317960
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Output control of da Vinci surgical system's surgical graspers.
    Johnson PJ; Schmidt DE; Duvvuri U
    J Surg Res; 2014 Jan; 186(1):56-62. PubMed ID: 23968806
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Robot-assisted minimally invasive lung brachytherapy.
    Trejos AL; Lin AW; Pytel MP; Patel RV; Malthaner RA
    Int J Med Robot; 2007 Mar; 3():41-51. PubMed ID: 17441025
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Minimally invasive total knee arthroplasty: the importance of instrumentation.
    Tria AJ
    Orthop Clin North Am; 2004 Apr; 35(2):227-34. PubMed ID: 15062708
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [A gearing mechanism with 4 degrees of freedom for robotic applications in medicine].
    Pott P; Weiser P; Scharf HP; Schwarz M
    Biomed Tech (Berl); 2004 Jun; 49(6):177-80. PubMed ID: 15279468
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.