These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
247 related articles for article (PubMed ID: 23081914)
1. Bioactive natural products from Papua New Guinea marine sponges. Noro JC; Kalaitzis JA; Neilan BA Chem Biodivers; 2012 Oct; 9(10):2077-95. PubMed ID: 23081914 [TBL] [Abstract][Full Text] [Related]
2. Neamphamide A, a new HIV-inhibitory depsipeptide from the Papua New Guinea marine sponge Neamphius huxleyi. Oku N; Gustafson KR; Cartner LK; Wilson JA; Shigematsu N; Hess S; Pannell LK; Boyd MR; McMahon JB J Nat Prod; 2004 Aug; 67(8):1407-11. PubMed ID: 15332865 [TBL] [Abstract][Full Text] [Related]
3. Polyketide synthases of bacterial symbionts in sponges--evolution-based applications in natural products research. Hochmuth T; Piel J Phytochemistry; 2009; 70(15-16):1841-9. PubMed ID: 19443000 [TBL] [Abstract][Full Text] [Related]
4. Natural products from marine organisms and their associated microbes. König GM; Kehraus S; Seibert SF; Abdel-Lateff A; Müller D Chembiochem; 2006 Feb; 7(2):229-38. PubMed ID: 16247831 [TBL] [Abstract][Full Text] [Related]
5. [Bioactive compounds from marine sponges and cell culture of marine sponges]. Zhang XY; Zhao QY; Xue S; Zhang W Sheng Wu Gong Cheng Xue Bao; 2002 Jan; 18(1):10-5. PubMed ID: 11977585 [TBL] [Abstract][Full Text] [Related]
6. Assessing calcareous sponges and their associated bacteria for the discovery of new bioactive natural products. Roué M; Quévrain E; Domart-Coulon I; Bourguet-Kondracki ML Nat Prod Rep; 2012 Jul; 29(7):739-51. PubMed ID: 22660834 [TBL] [Abstract][Full Text] [Related]
14. Metagenomic approaches to identify and isolate bioactive natural products from microbiota of marine sponges. Gurgui C; Piel J Methods Mol Biol; 2010; 668():247-64. PubMed ID: 20830569 [TBL] [Abstract][Full Text] [Related]
15. Syntheses of pseudoceramines A-D and a new synthesis of spermatinamine, bromotyrosine natural products from marine sponges. Hillgren JM; Oberg CT; Elofsson M Org Biomol Chem; 2012 Feb; 10(6):1246-54. PubMed ID: 22179542 [TBL] [Abstract][Full Text] [Related]
16. Microsclerodermins from terrestrial myxobacteria: an intriguing biosynthesis likely connected to a sponge symbiont. Hoffmann T; Müller S; Nadmid S; Garcia R; Müller R J Am Chem Soc; 2013 Nov; 135(45):16904-11. PubMed ID: 24124771 [TBL] [Abstract][Full Text] [Related]
17. The guineamides, novel cyclic depsipeptides from a Papua New Guinea collection of the marine cyanobacterium Lyngbya majuscula. Tan LT; Sitachitta N; Gerwick WH J Nat Prod; 2003 Jun; 66(6):764-71. PubMed ID: 12828459 [TBL] [Abstract][Full Text] [Related]
18. Bioactive compounds from marine sponges and their symbiotic microbes: a potential source of nutraceuticals. Kim SK; Dewapriya P Adv Food Nutr Res; 2012; 65():137-51. PubMed ID: 22361184 [TBL] [Abstract][Full Text] [Related]
19. Metagenomic approaches to exploit the biotechnological potential of the microbial consortia of marine sponges. Kennedy J; Marchesi JR; Dobson AD Appl Microbiol Biotechnol; 2007 May; 75(1):11-20. PubMed ID: 17318533 [TBL] [Abstract][Full Text] [Related]
20. New marine natural products from sponges (Porifera) of the order Dictyoceratida (2001 to 2012); a promising source for drug discovery, exploration and future prospects. Mehbub MF; Perkins MV; Zhang W; Franco CMM Biotechnol Adv; 2016; 34(5):473-491. PubMed ID: 26802363 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]