These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

578 related articles for article (PubMed ID: 23082126)

  • 1. Lactate activates HIF-1 in oxidative but not in Warburg-phenotype human tumor cells.
    De Saedeleer CJ; Copetti T; Porporato PE; Verrax J; Feron O; Sonveaux P
    PLoS One; 2012; 7(10):e46571. PubMed ID: 23082126
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CD147 subunit of lactate/H+ symporters MCT1 and hypoxia-inducible MCT4 is critical for energetics and growth of glycolytic tumors.
    Le Floch R; Chiche J; Marchiq I; Naiken T; Ilc K; Murray CM; Critchlow SE; Roux D; Simon MP; Pouysségur J
    Proc Natl Acad Sci U S A; 2011 Oct; 108(40):16663-8. PubMed ID: 21930917
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeting the lactate transporter MCT1 in endothelial cells inhibits lactate-induced HIF-1 activation and tumor angiogenesis.
    Sonveaux P; Copetti T; De Saedeleer CJ; Végran F; Verrax J; Kennedy KM; Moon EJ; Dhup S; Danhier P; Frérart F; Gallez B; Ribeiro A; Michiels C; Dewhirst MW; Feron O
    PLoS One; 2012; 7(3):e33418. PubMed ID: 22428047
    [TBL] [Abstract][Full Text] [Related]  

  • 4. miR-124 Suppresses Pancreatic Ductal Adenocarcinoma Growth by Regulating Monocarboxylate Transporter 1-Mediated Cancer Lactate Metabolism.
    Wu DH; Liang H; Lu SN; Wang H; Su ZL; Zhang L; Ma JQ; Guo M; Tai S; Yu S
    Cell Physiol Biochem; 2018; 50(3):924-935. PubMed ID: 30355947
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lactate influx through the endothelial cell monocarboxylate transporter MCT1 supports an NF-κB/IL-8 pathway that drives tumor angiogenesis.
    Végran F; Boidot R; Michiels C; Sonveaux P; Feron O
    Cancer Res; 2011 Apr; 71(7):2550-60. PubMed ID: 21300765
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lactic acid induces lactate transport and glycolysis/OXPHOS interconversion in glioblastoma.
    Duan K; Liu ZJ; Hu SQ; Huo HY; Xu ZR; Ruan JF; Sun Y; Dai LP; Yan CB; Xiong W; Cui QH; Yu HJ; Yu M; Qin Y
    Biochem Biophys Res Commun; 2018 Sep; 503(2):888-894. PubMed ID: 29928884
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lactate promotes glutamine uptake and metabolism in oxidative cancer cells.
    Pérez-Escuredo J; Dadhich RK; Dhup S; Cacace A; Van Hée VF; De Saedeleer CJ; Sboarina M; Rodriguez F; Fontenille MJ; Brisson L; Porporato PE; Sonveaux P
    Cell Cycle; 2016; 15(1):72-83. PubMed ID: 26636483
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic coupling and the Reverse Warburg Effect in cancer: Implications for novel biomarker and anticancer agent development.
    Wilde L; Roche M; Domingo-Vidal M; Tanson K; Philp N; Curry J; Martinez-Outschoorn U
    Semin Oncol; 2017 Jun; 44(3):198-203. PubMed ID: 29248131
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Clinically relevant HIF-1α-dependent metabolic reprogramming in oropharyngeal squamous cell carcinomas includes coordinated activation of CAIX and the miR-210/ISCU signaling axis, but not MCT1 and MCT4 upregulation.
    Sáenz-de-Santa-María I; Bernardo-Castiñeira C; Secades P; Bernaldo-de-Quirós S; Rodrigo JP; Astudillo A; Chiara MD
    Oncotarget; 2017 Feb; 8(8):13730-13746. PubMed ID: 28099149
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 'Warburg effect' controls tumor growth, bacterial, viral infections and immunity - Genetic deconstruction and therapeutic perspectives.
    Pouysségur J; Marchiq I; Parks SK; Durivault J; Ždralević M; Vucetic M
    Semin Cancer Biol; 2022 Nov; 86(Pt 2):334-346. PubMed ID: 35820598
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Warburg effect: essential part of metabolic reprogramming and central contributor to cancer progression.
    Vaupel P; Schmidberger H; Mayer A
    Int J Radiat Biol; 2019 Jul; 95(7):912-919. PubMed ID: 30822194
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reciprocal metabolic reprogramming through lactate shuttle coordinately influences tumor-stroma interplay.
    Fiaschi T; Marini A; Giannoni E; Taddei ML; Gandellini P; De Donatis A; Lanciotti M; Serni S; Cirri P; Chiarugi P
    Cancer Res; 2012 Oct; 72(19):5130-40. PubMed ID: 22850421
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Blocking lactate export by inhibiting the Myc target MCT1 Disables glycolysis and glutathione synthesis.
    Doherty JR; Yang C; Scott KE; Cameron MD; Fallahi M; Li W; Hall MA; Amelio AL; Mishra JK; Li F; Tortosa M; Genau HM; Rounbehler RJ; Lu Y; Dang CV; Kumar KG; Butler AA; Bannister TD; Hooper AT; Unsal-Kacmaz K; Roush WR; Cleveland JL
    Cancer Res; 2014 Feb; 74(3):908-20. PubMed ID: 24285728
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prolyl hydroxylase 2 dependent and Von-Hippel-Lindau independent degradation of Hypoxia-inducible factor 1 and 2 alpha by selenium in clear cell renal cell carcinoma leads to tumor growth inhibition.
    Chintala S; Najrana T; Toth K; Cao S; Durrani FA; Pili R; Rustum YM
    BMC Cancer; 2012 Jul; 12():293. PubMed ID: 22804960
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A CD147-targeting siRNA inhibits the proliferation, invasiveness, and VEGF production of human malignant melanoma cells by down-regulating glycolysis.
    Su J; Chen X; Kanekura T
    Cancer Lett; 2009 Jan; 273(1):140-7. PubMed ID: 18778892
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic targeting of HIF-dependent glycolysis reduces lactate, increases oxygen consumption and enhances response to high-dose single-fraction radiotherapy in hypoxic solid tumors.
    Leung E; Cairns RA; Chaudary N; Vellanki RN; Kalliomaki T; Moriyama EH; Mujcic H; Wilson BC; Wouters BG; Hill R; Milosevic M
    BMC Cancer; 2017 Jun; 17(1):418. PubMed ID: 28619042
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wortmannin influences hypoxia-inducible factor-1 alpha expression and glycolysis in esophageal carcinoma cells.
    Zeng L; Zhou HY; Tang NN; Zhang WF; He GJ; Hao B; Feng YD; Zhu H
    World J Gastroenterol; 2016 May; 22(20):4868-80. PubMed ID: 27239113
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monocarboxylate transporter 1 is a key player in glioma-endothelial cell crosstalk.
    Miranda-Gonçalves V; Bezerra F; Costa-Almeida R; Freitas-Cunha M; Soares R; Martinho O; Reis RM; Pinheiro C; Baltazar F
    Mol Carcinog; 2017 Dec; 56(12):2630-2642. PubMed ID: 28762551
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Disruption of BASIGIN decreases lactic acid export and sensitizes non-small cell lung cancer to biguanides independently of the LKB1 status.
    Granja S; Marchiq I; Le Floch R; Moura CS; Baltazar F; Pouysségur J
    Oncotarget; 2015 Mar; 6(9):6708-21. PubMed ID: 25894929
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic disruption of lactate/H+ symporters (MCTs) and their subunit CD147/BASIGIN sensitizes glycolytic tumor cells to phenformin.
    Marchiq I; Le Floch R; Roux D; Simon MP; Pouyssegur J
    Cancer Res; 2015 Jan; 75(1):171-80. PubMed ID: 25403912
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.