These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 23082279)

  • 1. Separation of absorption and scattering properties of turbid media using relative spectrally resolved cw radiance measurements.
    Grabtchak S; Whelan WM
    Biomed Opt Express; 2012 Oct; 3(10):2371-80. PubMed ID: 23082279
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of optical properties of turbid medium from relative interstitial CW radiance measurements using the incomplete P3 approximation.
    Liu L; Wan W; Qin Z; Zhang L; Jiang J; Wang Y; Gao F; Zhao H
    Opt Express; 2017 Oct; 25(21):25295-25309. PubMed ID: 29041198
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical absorption and scattering properties of bulk porcine muscle phantoms from interstitial radiance measurements in 650-900 nm range.
    Grabtchak S; Montgomery LG; Whelan WM
    Phys Med Biol; 2014 May; 59(10):2431-44. PubMed ID: 24743553
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tagging photons with gold nanoparticles as localized absorbers in optical measurements in turbid media.
    Grabtchak S; Callaghan KB; Whelan WM
    Biomed Opt Express; 2013; 4(12):2989-3006. PubMed ID: 24409396
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous recovery of a full set of optical properties in turbid media using incomplete P5 approximation to CW radiance.
    Liu L; Wan W; Li J; Zhao H; Gao F
    Opt Lett; 2018 Sep; 43(17):4188-4191. PubMed ID: 30160748
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Radiance detection of non-scattering inclusions in turbid media.
    Grabtchak S; Palmer TJ; Vitkin IA; Whelan WM
    Biomed Opt Express; 2012 Nov; 3(11):3001-11. PubMed ID: 23162735
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection of localized inclusions of gold nanoparticles in Intralipid-1% by point-radiance spectroscopy.
    Grabtchak S; Palmer TJ; Whelan WM
    J Biomed Opt; 2011 Jul; 16(7):077003. PubMed ID: 21806283
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of the optical properties of turbid media using relative interstitial radiance measurements: Monte Carlo study, experimental validation, and sensitivity analysis.
    Chin LC; Worthington AE; Whelan WM; Vitkin IA
    J Biomed Opt; 2007; 12(6):064027. PubMed ID: 18163843
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Information content of point radiance measurements in turbid media: implications for interstitial optical property quantification.
    Chin LC; Whelan WM; Vitkin IA
    Appl Opt; 2006 Mar; 45(9):2101-14. PubMed ID: 16579581
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Specialized source-detector separations in near-infrared reflectance spectroscopy platform enable effective separation of diffusion and absorption for glucose sensing.
    Liu J; Han T; Jiang J; Xu K
    Biomed Opt Express; 2019 Sep; 10(9):4839-4858. PubMed ID: 31565529
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scattering-independent glucose absorption measurement using a spectrally resolved reflectance setup with specialized variable source-detector separations.
    Liu J; Zhu C; Jiang J; Xu K
    Biomed Opt Express; 2018 Dec; 9(12):5903-5914. PubMed ID: 31065402
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of the optical properties of two-layer turbid media by use of a frequency-domain hybrid monte carlo diffusion model.
    Alexandrakis G; Busch DR; Faris GW; Patterson MS
    Appl Opt; 2001 Aug; 40(22):3810-21. PubMed ID: 18360415
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simple inexpensive method of measuring the temporal spreading of a light pulse propagating in a turbid medium.
    Zaccanti G; Bruscaglioni P; Dami M
    Appl Opt; 1990 Sep; 29(27):3938-44. PubMed ID: 20577317
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interstitial diffuse radiance spectroscopy of gold nanocages and nanorods in bulk muscle tissues.
    Grabtchak S; Montgomery LG; Pang B; Wang Y; Zhang C; Li Z; Xia Y; Whelan WM
    Int J Nanomedicine; 2015; 10():1307-20. PubMed ID: 25709450
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Method for Measuring Absolute Optical Properties of Turbid Samples in a Standard Cuvette.
    Blaney G; Sassaroli A; Fantini S
    Appl Sci (Basel); 2022 Nov; 12(21):. PubMed ID: 37811485
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Performance of isotropic light dosimetry probes based on scattering bulbs in turbid media.
    Marijnissen JP; Star WM
    Phys Med Biol; 2002 Jun; 47(12):2049-58. PubMed ID: 12118600
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monte Carlo modelling of angular radiance in tissue phantoms and human prostate: PDT light dosimetry.
    Barajas O; Ballangrud AM; Miller GG; Moore RB; Tulip J
    Phys Med Biol; 1997 Sep; 42(9):1675-87. PubMed ID: 9308075
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Broadband absorption spectroscopy of turbid media using a dual step steady-state method.
    Foschum F; Kienle A
    J Biomed Opt; 2012 Mar; 17(3):037009. PubMed ID: 22502581
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination of the optical properties of semi-infinite turbid media from frequency-domain reflectance close to the source.
    Kienle A; Patterson MS
    Phys Med Biol; 1997 Sep; 42(9):1801-19. PubMed ID: 9308085
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression of optical diffusion coefficient in high-absorption turbid media.
    Nakai T; Nishimura G; Yamamoto K; Tamura M
    Phys Med Biol; 1997 Dec; 42(12):2541-9. PubMed ID: 9434306
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.