These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 23082292)

  • 21. Highly Sensitive Shack-Hartmann Wavefront Sensor: Application to Non-Transparent Tissue Mimic Imaging with Adaptive Light-Sheet Fluorescence Microscopy.
    Morgado Brajones J; Clouvel G; Dovillaire G; Levecq X; Lorenzo C
    Methods Protoc; 2019 Jul; 2(3):. PubMed ID: 31336779
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Wavefront correction for adaptive optics with reflected light and deep neural networks.
    Vishniakou I; Seelig JD
    Opt Express; 2020 May; 28(10):15459-15471. PubMed ID: 32403573
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Spatially offset optical coherence tomography: Leveraging multiple scattering for high-contrast imaging at depth in turbid media.
    Untracht GR; Chen M; Wijesinghe P; Mas J; Yura HT; Marti D; Andersen PE; Dholakia K
    Sci Adv; 2023 Jul; 9(27):eadh5435. PubMed ID: 37418534
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Recent advances in optical imaging through deep tissue: imaging probes and techniques.
    Yoon S; Cheon SY; Park S; Lee D; Lee Y; Han S; Kim M; Koo H
    Biomater Res; 2022 Oct; 26(1):57. PubMed ID: 36273205
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ultrasound detection through turbid media.
    Yu P; Peng L; Nolte DD; Melloch MR
    Opt Lett; 2003 May; 28(10):819-21. PubMed ID: 12779157
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Use of adaptive optics to determine the optimal ocular spherical aberration.
    Piers PA; Manzanera S; Prieto PM; Gorceix N; Artal P
    J Cataract Refract Surg; 2007 Oct; 33(10):1721-6. PubMed ID: 17889766
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Speckle-resolved optical coherence tomography for mesoscopic imaging within scattering media.
    Cua M; Blochet B; Yang C
    Biomed Opt Express; 2022 Apr; 13(4):2068-2081. PubMed ID: 35519275
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Short coherence length produced by a spatial incoherent source applied for the Linnik-type interferometer.
    Zeylikovich I
    Appl Opt; 2008 Apr; 47(12):2171-7. PubMed ID: 18425192
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Construction and use of an adaptive optics two-photon microscope with direct wavefront sensing.
    Yao P; Liu R; Broggini T; Thunemann M; Kleinfeld D
    Nat Protoc; 2023 Dec; 18(12):3732-3766. PubMed ID: 37914781
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Finite-difference time-domain analysis of increased penetration depth in optical coherence tomography by wavefront shaping.
    Kim JU; Choi H; Park Y; Shin J
    Biomed Opt Express; 2018 Aug; 9(8):3883-3897. PubMed ID: 30338162
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Interferometric wavefront sensors for high contrast imaging.
    Baker KL
    Opt Express; 2006 Nov; 14(23):10970-5. PubMed ID: 19529510
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Femtosecond transillumination optical coherence tomography.
    Hee MR; Izatt JA; Jacobson JM; Fujimoto JG; Swanson EA
    Opt Lett; 1993 Jun; 18(12):950-2. PubMed ID: 19823255
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microscope-AOtools: a generalised adaptive optics implementation.
    Hall N; Titlow J; Booth MJ; Dobbie IM
    Opt Express; 2020 Sep; 28(20):28987-29003. PubMed ID: 33114806
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mirau-based line-field confocal optical coherence tomography for three-dimensional high-resolution skin imaging.
    Xue W; Ogien J; Bulkin P; Coutrot AL; Dubois A
    J Biomed Opt; 2022 Aug; 27(8):. PubMed ID: 35962466
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Brain refractive index measured in vivo with high-NA defocus-corrected full-field OCT and consequences for two-photon microscopy.
    Binding J; Ben Arous J; Léger JF; Gigan S; Boccara C; Bourdieu L
    Opt Express; 2011 Mar; 19(6):4833-47. PubMed ID: 21445119
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Combined hardware and computational optical wavefront correction.
    South FA; Kurokawa K; Liu Z; Liu YZ; Miller DT; Boppart SA
    Biomed Opt Express; 2018 Jun; 9(6):2562-2574. PubMed ID: 30258673
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Direct wavefront sensing for high-resolution in vivo imaging in scattering tissue.
    Wang K; Sun W; Richie CT; Harvey BK; Betzig E; Ji N
    Nat Commun; 2015 Jun; 6():7276. PubMed ID: 26073070
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Phase diversity-based wavefront sensing for fluorescence microscopy.
    Johnson C; Guo M; Schneider MC; Su Y; Khuon S; Reiser N; Wu Y; La Riviere P; Shroff H
    bioRxiv; 2024 Jan; ():. PubMed ID: 38168170
    [TBL] [Abstract][Full Text] [Related]  

  • 39. High-resolution adaptive optical imaging within thick scattering media using closed-loop accumulation of single scattering.
    Kang S; Kang P; Jeong S; Kwon Y; Yang TD; Hong JH; Kim M; Song KD; Park JH; Lee JH; Kim MJ; Kim KH; Choi W
    Nat Commun; 2017 Dec; 8(1):2157. PubMed ID: 29255208
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.