These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 23082292)

  • 41. Wavefront shaping for forward scattering.
    Mastiani B; Osnabrugge G; Vellekoop IM
    Opt Express; 2022 Oct; 30(21):37436-37445. PubMed ID: 36258332
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Towards model-based adaptive optics optical coherence tomography.
    Verstraete HR; Cense B; Bilderbeek R; Verhaegen M; Kalkman J
    Opt Express; 2014 Dec; 22(26):32406-18. PubMed ID: 25607203
    [TBL] [Abstract][Full Text] [Related]  

  • 43. High-resolution full-field optical coherence tomography with a Linnik microscope.
    Dubois A; Vabre L; Boccara AC; Beaurepaire E
    Appl Opt; 2002 Feb; 41(4):805-12. PubMed ID: 11993929
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Ultrahigh-resolution full-field optical coherence microscopy using InGaAs camera.
    Oh WY; Bouma BE; Iftimia N; Yun SH; Yelin R; Tearney GJ
    Opt Express; 2006 Jan; 14(2):726-35. PubMed ID: 19503391
    [TBL] [Abstract][Full Text] [Related]  

  • 45. In vivo imaging of human photoreceptor mosaic with wavefront sensorless adaptive optics optical coherence tomography.
    Wong KS; Jian Y; Cua M; Bonora S; Zawadzki RJ; Sarunic MV
    Biomed Opt Express; 2015 Feb; 6(2):580-90. PubMed ID: 25780747
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Enhancing image quality in cleared tissue with adaptive optics.
    Reinig MR; Novak SW; Tao X; Bentolila LA; Roberts DG; MacKenzie-Graham A; Godshalk SE; Raven MA; Knowles DW; Kubby J
    J Biomed Opt; 2016 Dec; 21(12):121508. PubMed ID: 27735018
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Local wavefront mapping in tissue using computational adaptive optics OCT.
    South FA; Liu YZ; Huang PC; Kohlfarber T; Boppart SA
    Opt Lett; 2019 Mar; 44(5):1186-1189. PubMed ID: 30821744
    [TBL] [Abstract][Full Text] [Related]  

  • 48. High temporal resolution aberrometry in a 50-eye population and implications for adaptive optics error budget.
    Jarosz J; MecĂȘ P; Conan JM; Petit C; Paques M; Meimon S
    Biomed Opt Express; 2017 Apr; 8(4):2088-2105. PubMed ID: 28736657
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Myopic aberrations: impact of centroiding noise in Hartmann Shack wavefront sensing.
    Akondi V; Vohnsen B
    Ophthalmic Physiol Opt; 2013 Jul; 33(4):434-43. PubMed ID: 23786384
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effect of aberrations and scatter on image resolution assessed by adaptive optics retinal section imaging.
    Wanek JM; Mori M; Shahidi M
    J Opt Soc Am A Opt Image Sci Vis; 2007 May; 24(5):1296-304. PubMed ID: 17429475
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The role of cardiopulmonary signals in the dynamics of the eye's wavefront aberrations.
    Muma M; Iskander DR; Collins MJ
    IEEE Trans Biomed Eng; 2010 Feb; 57(2):373-83. PubMed ID: 19789099
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Guide to the construction and use of an adaptive optics two-photon microscope with direct wavefront sensing.
    Yao P; Liu R; Broginni T; Thunemann M; Kleinfeld D
    bioRxiv; 2023 Jan; ():. PubMed ID: 36747816
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Wavefront measurement using computational adaptive optics.
    South FA; Liu YZ; Bower AJ; Xu Y; Carney PS; Boppart SA
    J Opt Soc Am A Opt Image Sci Vis; 2018 Mar; 35(3):466-473. PubMed ID: 29522050
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Imaging beyond the ballistic limit in coherence imaging using multiply scattered light.
    Giacomelli MG; Wax A
    Opt Express; 2011 Feb; 19(5):4268-79. PubMed ID: 21369257
    [TBL] [Abstract][Full Text] [Related]  

  • 55.
    Kumar A; Wurster LM; Salas M; Ginner L; Drexler W; Leitgeb RA
    Biomed Opt Express; 2017 Jul; 8(7):3369-3382. PubMed ID: 28717573
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Direct wavefront sensing in adaptive optical microscopy using backscattered light.
    Rahman SA; Booth MJ
    Appl Opt; 2013 Aug; 52(22):5523-32. PubMed ID: 23913074
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Characterization of wavefront errors in mouse cranial bone using second-harmonic generation.
    Tehrani KF; Kner P; Mortensen LJ
    J Biomed Opt; 2017 Mar; 22(3):36012. PubMed ID: 28323304
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Signal degradation by multiple scattering in optical coherence tomography of dense tissue: a Monte Carlo study towards optical clearing of biotissues.
    Wang RK
    Phys Med Biol; 2002 Jul; 47(13):2281-99. PubMed ID: 12164587
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Deep tissue multi-photon imaging using adaptive optics with direct focus sensing and shaping.
    Qin Z; She Z; Chen C; Wu W; Lau JKY; Ip NY; Qu JY
    Nat Biotechnol; 2022 Nov; 40(11):1663-1671. PubMed ID: 35697805
    [TBL] [Abstract][Full Text] [Related]  

  • 60.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.