BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 23082813)

  • 1. Structural and sequence analysis of the human γD-crystallin amyloid fibril core using 2D IR spectroscopy, segmental 13C labeling, and mass spectrometry.
    Moran SD; Decatur SM; Zanni MT
    J Am Chem Soc; 2012 Nov; 134(44):18410-6. PubMed ID: 23082813
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two-dimensional IR spectroscopy and segmental 13C labeling reveals the domain structure of human γD-crystallin amyloid fibrils.
    Moran SD; Woys AM; Buchanan LE; Bixby E; Decatur SM; Zanni MT
    Proc Natl Acad Sci U S A; 2012 Feb; 109(9):3329-34. PubMed ID: 22328156
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An alternative structural isoform in amyloid-like aggregates formed from thermally denatured human γD-crystallin.
    Moran SD; Zhang TO; Zanni MT
    Protein Sci; 2014 Mar; 23(3):321-31. PubMed ID: 24415662
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of the core structure of lysozyme amyloid fibrils by proteolysis.
    Frare E; Mossuto MF; Polverino de Laureto P; Dumoulin M; Dobson CM; Fontana A
    J Mol Biol; 2006 Aug; 361(3):551-61. PubMed ID: 16859705
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fibril formation of hsp10 homologue proteins and determination of fibril core regions: differences in fibril core regions dependent on subtle differences in amino acid sequence.
    Yagi H; Sato A; Yoshida A; Hattori Y; Hara M; Shimamura J; Sakane I; Hongo K; Mizobata T; Kawata Y
    J Mol Biol; 2008 Apr; 377(5):1593-606. PubMed ID: 18329043
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative analysis of human γD-crystallin aggregation under physiological and low pH conditions.
    Wu JW; Chen ME; Wen WS; Chen WA; Li CT; Chang CK; Lo CH; Liu HS; Wang SS
    PLoS One; 2014; 9(11):e112309. PubMed ID: 25389780
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amyloid fiber formation in human γD-Crystallin induced by UV-B photodamage.
    Moran SD; Zhang TO; Decatur SM; Zanni MT
    Biochemistry; 2013 Sep; 52(36):6169-81. PubMed ID: 23957864
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crosslinking of human lens 9 kDa gammaD-crystallin fragment in vitro and in vivo.
    Srivastava OP; Srivastava K
    Mol Vis; 2003 Dec; 9():644-56. PubMed ID: 14685148
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of the early stages of human γD-crystallin aggregation process.
    Chang CK; Wang SS; Lo CH; Hsiao HC; Wu JW
    J Biomol Struct Dyn; 2017 Apr; 35(5):1042-1054. PubMed ID: 27025196
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formation of amyloid fibrils in vitro by human gammaD-crystallin and its isolated domains.
    Papanikolopoulou K; Mills-Henry I; Thol SL; Wang Y; Gross AA; Kirschner DA; Decatur SM; King J
    Mol Vis; 2008 Jan; 14():81-9. PubMed ID: 18253099
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isotope-Labeled Amyloids via Synthesis, Expression, and Chemical Ligation for Use in FTIR, 2D IR, and NMR Studies.
    Zhang TO; Grechko M; Moran SD; Zanni MT
    Methods Mol Biol; 2016; 1345():21-41. PubMed ID: 26453203
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A structural core within apolipoprotein C-II amyloid fibrils identified using hydrogen exchange and proteolysis.
    Wilson LM; Mok YF; Binger KJ; Griffin MD; Mertens HD; Lin F; Wade JD; Gooley PR; Howlett GJ
    J Mol Biol; 2007 Mar; 366(5):1639-51. PubMed ID: 17217959
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrogen/deuterium exchange mass spectrometry identifies two highly protected regions in recombinant full-length prion protein amyloid fibrils.
    Nazabal A; Hornemann S; Aguzzi A; Zenobi R
    J Mass Spectrom; 2009 Jun; 44(6):965-77. PubMed ID: 19283723
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Constraints on supramolecular structure in amyloid fibrils from two-dimensional solid-state NMR spectroscopy with uniform isotopic labeling.
    Tycko R; Ishii Y
    J Am Chem Soc; 2003 Jun; 125(22):6606-7. PubMed ID: 12769550
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation of amyloid fibrils in vitro from partially unfolded intermediates of human gammaC-crystallin.
    Wang Y; Petty S; Trojanowski A; Knee K; Goulet D; Mukerji I; King J
    Invest Ophthalmol Vis Sci; 2010 Feb; 51(2):672-8. PubMed ID: 19684009
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural model of the amyloid fibril formed by beta(2)-microglobulin #21-31 fragment based on vibrational spectroscopy.
    Hiramatsu H; Goto Y; Naiki H; Kitagawa T
    J Am Chem Soc; 2005 Jun; 127(22):7988-9. PubMed ID: 15926803
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probing alpha-crystallin structure using chemical cross-linkers and mass spectrometry.
    Peterson JJ; Young MM; Takemoto LJ
    Mol Vis; 2004 Nov; 10():857-66. PubMed ID: 15570221
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure and intermolecular dynamics of aggregates populated during amyloid fibril formation studied by hydrogen/deuterium exchange.
    Carulla N; Zhou M; Giralt E; Robinson CV; Dobson CM
    Acc Chem Res; 2010 Aug; 43(8):1072-9. PubMed ID: 20557067
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The IXI/V motif in the C-terminal extension of alpha-crystallins: alternative interactions and oligomeric assemblies.
    Pasta SY; Raman B; Ramakrishna T; Rao ChM
    Mol Vis; 2004 Sep; 10():655-62. PubMed ID: 15448619
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein denaturation and aggregation: Cellular responses to denatured and aggregated proteins.
    Meredith SC
    Ann N Y Acad Sci; 2005 Dec; 1066():181-221. PubMed ID: 16533927
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.