These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 23082813)
1. Structural and sequence analysis of the human γD-crystallin amyloid fibril core using 2D IR spectroscopy, segmental 13C labeling, and mass spectrometry. Moran SD; Decatur SM; Zanni MT J Am Chem Soc; 2012 Nov; 134(44):18410-6. PubMed ID: 23082813 [TBL] [Abstract][Full Text] [Related]
2. Two-dimensional IR spectroscopy and segmental 13C labeling reveals the domain structure of human γD-crystallin amyloid fibrils. Moran SD; Woys AM; Buchanan LE; Bixby E; Decatur SM; Zanni MT Proc Natl Acad Sci U S A; 2012 Feb; 109(9):3329-34. PubMed ID: 22328156 [TBL] [Abstract][Full Text] [Related]
3. An alternative structural isoform in amyloid-like aggregates formed from thermally denatured human γD-crystallin. Moran SD; Zhang TO; Zanni MT Protein Sci; 2014 Mar; 23(3):321-31. PubMed ID: 24415662 [TBL] [Abstract][Full Text] [Related]
4. Identification of the core structure of lysozyme amyloid fibrils by proteolysis. Frare E; Mossuto MF; Polverino de Laureto P; Dumoulin M; Dobson CM; Fontana A J Mol Biol; 2006 Aug; 361(3):551-61. PubMed ID: 16859705 [TBL] [Abstract][Full Text] [Related]
5. Fibril formation of hsp10 homologue proteins and determination of fibril core regions: differences in fibril core regions dependent on subtle differences in amino acid sequence. Yagi H; Sato A; Yoshida A; Hattori Y; Hara M; Shimamura J; Sakane I; Hongo K; Mizobata T; Kawata Y J Mol Biol; 2008 Apr; 377(5):1593-606. PubMed ID: 18329043 [TBL] [Abstract][Full Text] [Related]
6. Comparative analysis of human γD-crystallin aggregation under physiological and low pH conditions. Wu JW; Chen ME; Wen WS; Chen WA; Li CT; Chang CK; Lo CH; Liu HS; Wang SS PLoS One; 2014; 9(11):e112309. PubMed ID: 25389780 [TBL] [Abstract][Full Text] [Related]
7. Amyloid fiber formation in human γD-Crystallin induced by UV-B photodamage. Moran SD; Zhang TO; Decatur SM; Zanni MT Biochemistry; 2013 Sep; 52(36):6169-81. PubMed ID: 23957864 [TBL] [Abstract][Full Text] [Related]
8. Crosslinking of human lens 9 kDa gammaD-crystallin fragment in vitro and in vivo. Srivastava OP; Srivastava K Mol Vis; 2003 Dec; 9():644-56. PubMed ID: 14685148 [TBL] [Abstract][Full Text] [Related]
9. Investigation of the early stages of human γD-crystallin aggregation process. Chang CK; Wang SS; Lo CH; Hsiao HC; Wu JW J Biomol Struct Dyn; 2017 Apr; 35(5):1042-1054. PubMed ID: 27025196 [TBL] [Abstract][Full Text] [Related]
10. Formation of amyloid fibrils in vitro by human gammaD-crystallin and its isolated domains. Papanikolopoulou K; Mills-Henry I; Thol SL; Wang Y; Gross AA; Kirschner DA; Decatur SM; King J Mol Vis; 2008 Jan; 14():81-9. PubMed ID: 18253099 [TBL] [Abstract][Full Text] [Related]
11. Isotope-Labeled Amyloids via Synthesis, Expression, and Chemical Ligation for Use in FTIR, 2D IR, and NMR Studies. Zhang TO; Grechko M; Moran SD; Zanni MT Methods Mol Biol; 2016; 1345():21-41. PubMed ID: 26453203 [TBL] [Abstract][Full Text] [Related]
12. A structural core within apolipoprotein C-II amyloid fibrils identified using hydrogen exchange and proteolysis. Wilson LM; Mok YF; Binger KJ; Griffin MD; Mertens HD; Lin F; Wade JD; Gooley PR; Howlett GJ J Mol Biol; 2007 Mar; 366(5):1639-51. PubMed ID: 17217959 [TBL] [Abstract][Full Text] [Related]
13. Hydrogen/deuterium exchange mass spectrometry identifies two highly protected regions in recombinant full-length prion protein amyloid fibrils. Nazabal A; Hornemann S; Aguzzi A; Zenobi R J Mass Spectrom; 2009 Jun; 44(6):965-77. PubMed ID: 19283723 [TBL] [Abstract][Full Text] [Related]
14. Constraints on supramolecular structure in amyloid fibrils from two-dimensional solid-state NMR spectroscopy with uniform isotopic labeling. Tycko R; Ishii Y J Am Chem Soc; 2003 Jun; 125(22):6606-7. PubMed ID: 12769550 [TBL] [Abstract][Full Text] [Related]
15. Formation of amyloid fibrils in vitro from partially unfolded intermediates of human gammaC-crystallin. Wang Y; Petty S; Trojanowski A; Knee K; Goulet D; Mukerji I; King J Invest Ophthalmol Vis Sci; 2010 Feb; 51(2):672-8. PubMed ID: 19684009 [TBL] [Abstract][Full Text] [Related]
16. Structural model of the amyloid fibril formed by beta(2)-microglobulin #21-31 fragment based on vibrational spectroscopy. Hiramatsu H; Goto Y; Naiki H; Kitagawa T J Am Chem Soc; 2005 Jun; 127(22):7988-9. PubMed ID: 15926803 [TBL] [Abstract][Full Text] [Related]
17. Probing alpha-crystallin structure using chemical cross-linkers and mass spectrometry. Peterson JJ; Young MM; Takemoto LJ Mol Vis; 2004 Nov; 10():857-66. PubMed ID: 15570221 [TBL] [Abstract][Full Text] [Related]
18. Structure and intermolecular dynamics of aggregates populated during amyloid fibril formation studied by hydrogen/deuterium exchange. Carulla N; Zhou M; Giralt E; Robinson CV; Dobson CM Acc Chem Res; 2010 Aug; 43(8):1072-9. PubMed ID: 20557067 [TBL] [Abstract][Full Text] [Related]
19. The IXI/V motif in the C-terminal extension of alpha-crystallins: alternative interactions and oligomeric assemblies. Pasta SY; Raman B; Ramakrishna T; Rao ChM Mol Vis; 2004 Sep; 10():655-62. PubMed ID: 15448619 [TBL] [Abstract][Full Text] [Related]
20. Protein denaturation and aggregation: Cellular responses to denatured and aggregated proteins. Meredith SC Ann N Y Acad Sci; 2005 Dec; 1066():181-221. PubMed ID: 16533927 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]