BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 23082823)

  • 1. Exogenous ergosterol protects Saccharomyces cerevisiae from D-limonene stress.
    Liu J; Zhu Y; Du G; Zhou J; Chen J
    J Appl Microbiol; 2013 Feb; 114(2):482-91. PubMed ID: 23082823
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physiological and transcriptional responses of Saccharomyces cerevisiae to d-limonene show changes to the cell wall but not to the plasma membrane.
    Brennan TC; Krömer JO; Nielsen LK
    Appl Environ Microbiol; 2013 Jun; 79(12):3590-600. PubMed ID: 23542628
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Response of Saccharomyces cerevisiae to D-limonene-induced oxidative stress.
    Liu J; Zhu Y; Du G; Zhou J; Chen J
    Appl Microbiol Biotechnol; 2013 Jul; 97(14):6467-75. PubMed ID: 23644769
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Decreased fluidity of cell membranes causes a metal ion deficiency in recombinant Saccharomyces cerevisiae producing carotenoids.
    Liu P; Sun L; Sun Y; Shang F; Yan G
    J Ind Microbiol Biotechnol; 2016 Apr; 43(4):525-35. PubMed ID: 26749524
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Key cytomembrane ABC transporters of Saccharomyces cerevisiae fail to improve the tolerance to D-limonene.
    Hu F; Liu J; Du G; Hua Z; Zhou J; Chen J
    Biotechnol Lett; 2012 Aug; 34(8):1505-9. PubMed ID: 22526424
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Capturing of the monoterpene olefin limonene produced in Saccharomyces cerevisiae.
    Jongedijk E; Cankar K; Ranzijn J; van der Krol S; Bouwmeester H; Beekwilder J
    Yeast; 2015 Jan; 32(1):159-71. PubMed ID: 25164098
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Implications of FPS1 deletion and membrane ergosterol content for glycerol efflux from Saccharomyces cerevisiae.
    Toh TH; Kayingo G; van der Merwe MJ; Kilian SG; Hallsworth JE; Hohmann S; Prior BA
    FEMS Yeast Res; 2001 Dec; 1(3):205-11. PubMed ID: 12702345
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tolerance and stress response to ethanol in the yeast Saccharomyces cerevisiae.
    Ding J; Huang X; Zhang L; Zhao N; Yang D; Zhang K
    Appl Microbiol Biotechnol; 2009 Nov; 85(2):253-63. PubMed ID: 19756577
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanistic role of ergosterol in membrane rigidity and cycloheximide resistance in Saccharomyces cerevisiae.
    Abe F; Hiraki T
    Biochim Biophys Acta; 2009 Mar; 1788(3):743-52. PubMed ID: 19118519
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Involvement of ergosterol in tolerance to vanillin, a potential inhibitor of bioethanol fermentation, in Saccharomyces cerevisiae.
    Endo A; Nakamura T; Shima J
    FEMS Microbiol Lett; 2009 Oct; 299(1):95-9. PubMed ID: 19686341
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improve the production of D-limonene by regulating the mevalonate pathway of Saccharomyces cerevisiae during alcoholic beverage fermentation.
    Hu Z; Li H; Weng Y; Li P; Zhang C; Xiao D
    J Ind Microbiol Biotechnol; 2020 Dec; 47(12):1083-1097. PubMed ID: 33191463
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The physiological roles of membrane ergosterol as revealed by the phenotypes of syr1/erg3 null mutant of Saccharomyces cerevisiae.
    Hemmi K; Julmanop C; Hirata D; Tsuchiya E; Takemoto JY; Miyakawa T
    Biosci Biotechnol Biochem; 1995 Mar; 59(3):482-6. PubMed ID: 7766188
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes of Saccharomyces cerevisiae cell membrane components and promotion to ethanol tolerance during the bioethanol fermentation.
    Dong SJ; Yi CF; Li H
    Int J Biochem Cell Biol; 2015 Dec; 69():196-203. PubMed ID: 26515124
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Membrane lipid variability in Saccharomyces cerevisiae wine strains rehydrated in the presence of metabolic activators.
    Díaz-Hellín P; Gómez-Alonso S; Borrull A; Rozès N; Cordero-Otero R; Úbeda J
    J Agric Food Chem; 2014 Aug; 62(34):8679-85. PubMed ID: 25007414
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Indentation with atomic force microscope, Saccharomyces cerevisiae cell gains elasticity under ethanol stress.
    Niu YP; Lin XH; Dong SJ; Yuan QP; Li H
    Int J Biochem Cell Biol; 2016 Oct; 79():337-344. PubMed ID: 27613572
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of singlet oxygen on membrane sterols in the yeast Saccharomyces cerevisiae.
    Böcking T; Barrow KD; Netting AG; Chilcott TC; Coster HG; Höfer M
    Eur J Biochem; 2000 Mar; 267(6):1607-18. PubMed ID: 10712590
    [TBL] [Abstract][Full Text] [Related]  

  • 17. tert-Butyl hydroperoxide-induced differing plasma membrane and oxidative stress processes in yeast strains BY4741 and erg5Δ.
    Gazdag Z; Máté G; Certik M; Türmer K; Virág E; Pócsi I; Pesti M
    J Basic Microbiol; 2014 Jul; 54 Suppl 1():S50-62. PubMed ID: 24687861
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pdr18 is involved in yeast response to acetic acid stress counteracting the decrease of plasma membrane ergosterol content and order.
    Godinho CP; Prata CS; Pinto SN; Cardoso C; Bandarra NM; Fernandes F; Sá-Correia I
    Sci Rep; 2018 May; 8(1):7860. PubMed ID: 29777118
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rate-limiting steps in the Saccharomyces cerevisiae ergosterol pathway: towards improved ergosta-5,7-dien-3β-ol accumulation by metabolic engineering.
    Ma BX; Ke X; Tang XL; Zheng RC; Zheng YG
    World J Microbiol Biotechnol; 2018 Mar; 34(4):55. PubMed ID: 29594560
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering Saccharomyces cerevisiae for production of the valuable monoterpene d-limonene during Chinese Baijiu fermentation.
    Hu Z; Lin L; Li H; Li P; Weng Y; Zhang C; Yu A; Xiao D
    J Ind Microbiol Biotechnol; 2020 Jul; 47(6-7):511-523. PubMed ID: 32495196
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.