These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 23082863)
21. Bacteriophage Treatment before Chemical Disinfection Can Enhance Removal of Plastic-Surface-Associated Pseudomonas aeruginosa. Stachler E; Kull A; Julian TR Appl Environ Microbiol; 2021 Sep; 87(20):e0098021. PubMed ID: 34347517 [TBL] [Abstract][Full Text] [Related]
22. Cooccurrence of free-living amoebae and nontuberculous Mycobacteria in hospital water networks, and preferential growth of Mycobacterium avium in Acanthamoeba lenticulata. Ovrutsky AR; Chan ED; Kartalija M; Bai X; Jackson M; Gibbs S; Falkinham JO; Iseman MD; Reynolds PR; McDonnell G; Thomas V Appl Environ Microbiol; 2013 May; 79(10):3185-92. PubMed ID: 23475613 [TBL] [Abstract][Full Text] [Related]
23. Inactivation of two Mycobacteria by free chlorine: Effectiveness, influencing factors, and mechanisms. Wang J; Sui M; Yuan B; Li H; Lu H Sci Total Environ; 2019 Jan; 648():271-284. PubMed ID: 30118940 [TBL] [Abstract][Full Text] [Related]
24. Impact of chloramination on the development of laboratory-grown biofilms fed with filter-pretreated groundwater. Ling F; Liu WT Microbes Environ; 2013; 28(1):50-7. PubMed ID: 23124766 [TBL] [Abstract][Full Text] [Related]
25. Formation of filamentous fungal biofilms in water and the transformation of resistance to chlor(am)ine disinfection. Chang B; Wan Q; Wu G; Cheng Y; Wang J; Huang T; Wen G J Hazard Mater; 2024 Sep; 476():135138. PubMed ID: 38996681 [TBL] [Abstract][Full Text] [Related]
26. Incidence of nontuberculous mycobacteria in four hot water systems using various types of disinfection. Sebakova H; Kozisek F; Mudra R; Kaustova J; Fiedorova M; Hanslikova D; Nachtmannova H; Kubina J; Vraspir P; Sasek J Can J Microbiol; 2008 Nov; 54(11):891-8. PubMed ID: 18997845 [TBL] [Abstract][Full Text] [Related]
27. Formation of natural biofilms during chlorine dioxide and u.v. disinfection in a public drinking water distribution system. Schwartz T; Hoffmann S; Obst U J Appl Microbiol; 2003; 95(3):591-601. PubMed ID: 12911708 [TBL] [Abstract][Full Text] [Related]
28. Legionella pneumophila associated with the protozoan Hartmannella vermiformis in a model multi-species biofilm has reduced susceptibility to disinfectants. Donlan RM; Forster T; Murga R; Brown E; Lucas C; Carpenter J; Fields B Biofouling; 2005; 21(1):1-7. PubMed ID: 16019386 [TBL] [Abstract][Full Text] [Related]
29. Structural analysis of biofilm formation by rapidly and slowly growing nontuberculous mycobacteria. Williams MM; Yakrus MA; Arduino MJ; Cooksey RC; Crane CB; Banerjee SN; Hilborn ED; Donlan RM Appl Environ Microbiol; 2009 Apr; 75(7):2091-8. PubMed ID: 19201956 [TBL] [Abstract][Full Text] [Related]
30. Effective control of dental chair unit waterline biofilm and marked reduction of bacterial contamination of output water using two peroxide-based disinfectants. Tuttlebee CM; O'Donnell MJ; Keane CT; Russell RJ; Sullivan DJ; Falkiner F; Coleman DC J Hosp Infect; 2002 Nov; 52(3):192-205. PubMed ID: 12419272 [TBL] [Abstract][Full Text] [Related]
31. Disinfection of Burkholderia pseudomallei in potable water. Howard K; Inglis TJ Water Res; 2005 Mar; 39(6):1085-92. PubMed ID: 15766962 [TBL] [Abstract][Full Text] [Related]
32. Effects of monochloramine on culturability, viability and persistence of Pseudomonas putida and tap water mixed bacterial community. Ng WJ; Tan CT; Bae S Appl Microbiol Biotechnol; 2021 May; 105(9):3799-3810. PubMed ID: 33885926 [TBL] [Abstract][Full Text] [Related]
33. Long-term effects of disinfectants on the community composition of drinking water biofilms. Roeder RS; Lenz J; Tarne P; Gebel J; Exner M; Szewzyk U Int J Hyg Environ Health; 2010 Jun; 213(3):183-9. PubMed ID: 20494617 [TBL] [Abstract][Full Text] [Related]
34. Investigation of opportunistic pathogens in municipal drinking water under different supply and treatment regimes. Pryor M; Springthorpe S; Riffard S; Brooks T; Huo Y; Davis G; Sattar SA Water Sci Technol; 2004; 50(1):83-90. PubMed ID: 15318491 [TBL] [Abstract][Full Text] [Related]
35. An in-vitro dynamic flow model for translational research into dental unit water system biofilms. Hoogenkamp MA; Brandt BW; de Soet JJ; Crielaard W J Microbiol Methods; 2020 Apr; 171():105879. PubMed ID: 32105699 [TBL] [Abstract][Full Text] [Related]
36. Establishing a laboratory model of dental unit waterlines bacterial biofilms using a CDC biofilm reactor. Yoon HY; Lee SY Biofouling; 2017 Nov; 33(10):917-926. PubMed ID: 29160100 [TBL] [Abstract][Full Text] [Related]
38. Effect of GAC pre-treatment and disinfectant on microbial community structure and opportunistic pathogen occurrence. Wang H; Pryor MA; Edwards MA; Falkinham JO; Pruden A Water Res; 2013 Oct; 47(15):5760-72. PubMed ID: 23906775 [TBL] [Abstract][Full Text] [Related]
39. Monochloramine versus sodium hypochlorite as antimicrobial agents for reducing populations of bacteria on broiler chicken carcasses. Russell SM; Axtell SP J Food Prot; 2005 Apr; 68(4):758-63. PubMed ID: 15830667 [TBL] [Abstract][Full Text] [Related]
40. Role of RpoS and AlgT in Pseudomonas aeruginosa biofilm resistance to hydrogen peroxide and monochloramine. Cochran WL; Suh SJ; McFeters GA; Stewart PS J Appl Microbiol; 2000 Mar; 88(3):546-53. PubMed ID: 10747236 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]