These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 23082914)
21. Ultrastructure of the cell surface cellulosome of Clostridium thermocellum and its interaction with cellulose. Bayer EA; Lamed R J Bacteriol; 1986 Sep; 167(3):828-36. PubMed ID: 3745121 [TBL] [Abstract][Full Text] [Related]
22. Cohesin-dockerin microarray: Diverse specificities between two complementary families of interacting protein modules. Haimovitz R; Barak Y; Morag E; Voronov-Goldman M; Shoham Y; Lamed R; Bayer EA Proteomics; 2008 Mar; 8(5):968-79. PubMed ID: 18219699 [TBL] [Abstract][Full Text] [Related]
23. Enzymatic diversity of the Clostridium thermocellum cellulosome is crucial for the degradation of crystalline cellulose and plant biomass. Hirano K; Kurosaki M; Nihei S; Hasegawa H; Shinoda S; Haruki M; Hirano N Sci Rep; 2016 Oct; 6():35709. PubMed ID: 27759119 [TBL] [Abstract][Full Text] [Related]
25. Enhanced cellulose degradation by targeted integration of a cohesin-fused β-glucosidase into the Clostridium thermocellum cellulosome. Gefen G; Anbar M; Morag E; Lamed R; Bayer EA Proc Natl Acad Sci U S A; 2012 Jun; 109(26):10298-303. PubMed ID: 22689961 [TBL] [Abstract][Full Text] [Related]
26. Mutations in the scaffoldin gene, cipA, of Clostridium thermocellum with impaired cellulosome formation and cellulose hydrolysis: insertions of a new transposable element, IS1447, and implications for cellulase synergism on crystalline cellulose. Zverlov VV; Klupp M; Krauss J; Schwarz WH J Bacteriol; 2008 Jun; 190(12):4321-7. PubMed ID: 18408027 [TBL] [Abstract][Full Text] [Related]
27. Molecular architecture and structural transitions of a Clostridium thermocellum mini-cellulosome. García-Alvarez B; Melero R; Dias FM; Prates JA; Fontes CM; Smith SP; Romão MJ; Carvalho AL; Llorca O J Mol Biol; 2011 Apr; 407(4):571-80. PubMed ID: 21315080 [TBL] [Abstract][Full Text] [Related]
28. Effects of synthetic cohesin-containing scaffold protein architecture on binding dockerin-enzyme fusions on the surface of Lactococcus lactis. Wieczorek AS; Martin VJ Microb Cell Fact; 2012 Dec; 11():160. PubMed ID: 23241215 [TBL] [Abstract][Full Text] [Related]
29. Expression, purification and structural characterization of the scaffoldin hydrophilic X-module from the cellulosome of Clostridium thermocellum. Adams JJ; Jang CJ; Spencer HL; Elliott M; Smith SP Protein Expr Purif; 2004 Dec; 38(2):258-63. PubMed ID: 15555941 [TBL] [Abstract][Full Text] [Related]
30. Mechanism of bacterial cell-surface attachment revealed by the structure of cellulosomal type II cohesin-dockerin complex. Adams JJ; Pal G; Jia Z; Smith SP Proc Natl Acad Sci U S A; 2006 Jan; 103(2):305-10. PubMed ID: 16384918 [TBL] [Abstract][Full Text] [Related]
31. Global view of the Clostridium thermocellum cellulosome revealed by quantitative proteomic analysis. Gold ND; Martin VJ J Bacteriol; 2007 Oct; 189(19):6787-95. PubMed ID: 17644599 [TBL] [Abstract][Full Text] [Related]
33. Novel Clostridium thermocellum type I cohesin-dockerin complexes reveal a single binding mode. Brás JL; Alves VD; Carvalho AL; Najmudin S; Prates JA; Ferreira LM; Bolam DN; Romão MJ; Gilbert HJ; Fontes CM J Biol Chem; 2012 Dec; 287(53):44394-405. PubMed ID: 23118225 [TBL] [Abstract][Full Text] [Related]
34. Engineered proteins containing the cohesin and dockerin domains from Clostridium thermocellum provides a reversible, high affinity interaction for biotechnology applications. Craig SJ; Foong FC; Nordon R J Biotechnol; 2006 Jan; 121(2):165-73. PubMed ID: 16111782 [TBL] [Abstract][Full Text] [Related]
35. Reversible and multi-cyclic protein-protein interaction in bacterial cellulosome-mimic system using rod-shaped viral nanostructure. Kim HJ; Lee EJ; Park JS; Sim SJ; Lee J J Biotechnol; 2016 Mar; 221():101-6. PubMed ID: 26820321 [TBL] [Abstract][Full Text] [Related]
36. High-throughput screening of cohesin mutant libraries on cellulose microarrays. Slutzki M; Ruimy V; Morag E; Barak Y; Haimovitz R; Lamed R; Bayer EA Methods Enzymol; 2012; 510():453-63. PubMed ID: 22608741 [TBL] [Abstract][Full Text] [Related]
37. Indirect ELISA-based approach for comparative measurement of high-affinity cohesin-dockerin interactions. Slutzki M; Barak Y; Reshef D; Schueler-Furman O; Lamed R; Bayer EA J Mol Recognit; 2012 Nov; 25(11):616-22. PubMed ID: 23108621 [TBL] [Abstract][Full Text] [Related]
38. Role of the CipA scaffoldin protein in cellulose solubilization, as determined by targeted gene deletion and complementation in Clostridium thermocellum. Olson DG; Giannone RJ; Hettich RL; Lynd LR J Bacteriol; 2013 Feb; 195(4):733-9. PubMed ID: 23204466 [TBL] [Abstract][Full Text] [Related]
39. Cellulosic ethanol production using a yeast consortium displaying a minicellulosome and β-glucosidase. Kim S; Baek SH; Lee K; Hahn JS Microb Cell Fact; 2013 Feb; 12():14. PubMed ID: 23383678 [TBL] [Abstract][Full Text] [Related]
40. Cohesin-dockerin interactions within and between Clostridium josui and Clostridium thermocellum: binding selectivity between cognate dockerin and cohesin domains and species specificity. Jindou S; Soda A; Karita S; Kajino T; Béguin P; Wu JH; Inagaki M; Kimura T; Sakka K; Ohmiya K J Biol Chem; 2004 Mar; 279(11):9867-74. PubMed ID: 14688277 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]