These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 23082932)

  • 41. The influence of long-term chromatic adaptation on pigment cells and striped pigment patterns in the skin of the zebrafish, Danio rerio.
    Sugimoto M; Yuki M; Miyakoshi T; Maruko K
    J Exp Zool A Comp Exp Biol; 2005 Jun; 303(6):430-40. PubMed ID: 15880775
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Directionality of stripes formed by anisotropic reaction-diffusion models.
    Shoji H; Iwasa Y; Mochizuki A; Kondo S
    J Theor Biol; 2002 Feb; 214(4):549-61. PubMed ID: 11851367
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Functions of melanin-concentrating hormone in fish.
    Kawauchi H
    J Exp Zool A Comp Exp Biol; 2006 Sep; 305(9):751-60. PubMed ID: 16902970
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Role of the pituitary gland in adaption of the fish Tilapia mossambica (Peters) to contrasting backgrounds.
    Latey AN; Rangneker PV
    Endokrinologie; 1982 Jul; 79(3):406-14. PubMed ID: 7128553
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Inhibiting roles of melanin-concentrating hormone for skin pigment dispersion in barfin flounder, Verasper moseri.
    Mizusawa K; Kobayashi Y; Sunuma T; Asahida T; Saito Y; Takahashi A
    Gen Comp Endocrinol; 2011 Mar; 171(1):75-81. PubMed ID: 21185295
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The thyroid--a gland in search of a function.
    Etkin W
    Perspect Biol Med; 1978; 22(1):19-30. PubMed ID: 733452
    [No Abstract]   [Full Text] [Related]  

  • 47. Breathing air in air: in what ways might extant amphibious fish biology relate to prevailing concepts about early tetrapods, the evolution of vertebrate air breathing, and the vertebrate land transition?
    Graham JB; Lee HJ
    Physiol Biochem Zool; 2004; 77(5):720-31. PubMed ID: 15547791
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Excretion in lower vertebrates: function of gut, cloaca, and bladder in modifying the composition of urine.
    Skadhauge E
    Fed Proc; 1977 Oct; 36(11):2487-92. PubMed ID: 332527
    [No Abstract]   [Full Text] [Related]  

  • 49. The melanin-concentrating hormone receptor 2 (MCH-R2) mediates the effect of MCH to control body color for background adaptation in the barfin flounder.
    Takahashi A; Kosugi T; Kobayashi Y; Yamanome T; Schiöth HB; Kawauchi H
    Gen Comp Endocrinol; 2007 Apr; 151(2):210-9. PubMed ID: 17324419
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [Electrophysiologic parameters of ion transport systems in early developmental stages of fish and amphibia].
    Goĭda OA; Chaban VV; Medyna IR
    Fiziol Zh (1978); 1992; 38(6):102-5. PubMed ID: 1340443
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Melanophores in the stripes of adult zebrafish do not have the nature to gather, but disperse when they have the space to move.
    Takahashi G; Kondo S
    Pigment Cell Melanoma Res; 2008 Dec; 21(6):677-86. PubMed ID: 19067972
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Beyond skin color: emerging roles of melanin-concentrating hormone in energy homeostasis and other physiological functions.
    Shi Y
    Peptides; 2004 Oct; 25(10):1605-11. PubMed ID: 15476927
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Relationships between specialized cells, capillaries and intermediary cytofibrillary elements. XVth note. Biological evolution of the respiratory stereotype and subsystem in aquatic vertebrates.
    Mârza VD
    Morphol Embryol (Bucur); 1981; 27(4):283-97. PubMed ID: 6460168
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Fish skin pigmentation in aquaculture: The influence of rearing conditions and its neuroendocrine regulation.
    Vissio PG; Darias MJ; Di Yorio MP; Pérez Sirkin DI; Delgadin TH
    Gen Comp Endocrinol; 2021 Jan; 301():113662. PubMed ID: 33220300
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Studies on the color-change mechanism in a fresh-water teleost, Nandus nandus (Ham.). II. Hormonal control.
    Jain AK; Bhargava HN
    Neuroendocrinology; 1978; 26(5):261-9. PubMed ID: 683473
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Communication and camouflage with the same 'bright' colours in reef fishes.
    Marshall NJ
    Philos Trans R Soc Lond B Biol Sci; 2000 Sep; 355(1401):1243-8. PubMed ID: 11079407
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Cellular aspects of the control of physiological color changes in amphibians.
    Novales RR; Davis WJ
    Am Zool; 1969 May; 9(2):479-88. PubMed ID: 4311990
    [No Abstract]   [Full Text] [Related]  

  • 58. Photonic crystals cause active colour change in chameleons.
    Teyssier J; Saenko SV; van der Marel D; Milinkovitch MC
    Nat Commun; 2015 Mar; 6():6368. PubMed ID: 25757068
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Environmental influences on the development of the cardiac system in fish and amphibians.
    Pelster B
    Comp Biochem Physiol A Mol Integr Physiol; 1999 Dec; 124(4):407-12. PubMed ID: 10682238
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The control of bright colored pigment cells of fishes and amphibians.
    Bagnara JT; Hadley ME
    Am Zool; 1969 May; 9(2):465-78. PubMed ID: 5362277
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.