BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 23082977)

  • 1. Role of bivalent cations in structural stabilities of new drug targets--vaccinia-related kinases (VRK) from molecular dynamics simulations.
    Fu T; Ren H; Zhang J; Ren P; Enyedy I; Li G
    Curr Pharm Des; 2013; 19(12):2269-81. PubMed ID: 23082977
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural characterization of human Vaccinia-Related Kinases (VRK) bound to small-molecule inhibitors identifies different P-loop conformations.
    Couñago RM; Allerston CK; Savitsky P; Azevedo H; Godoi PH; Wells CI; Mascarello A; de Souza Gama FH; Massirer KB; Zuercher WJ; Guimarães CRW; Gileadi O
    Sci Rep; 2017 Aug; 7(1):7501. PubMed ID: 28790404
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Vaccinia Virus B12 Pseudokinase Represses Viral Replication via Interaction with the Cellular Kinase VRK1 and Activation of the Antiviral Effector BAF.
    Rico AB; Linville AC; Olson AT; Wang Z; Wiebe MS
    J Virol; 2021 Jan; 95(3):. PubMed ID: 33177193
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Tribbles 2 (TRB2) pseudokinase binds to ATP and autophosphorylates in a metal-independent manner.
    Bailey FP; Byrne DP; Oruganty K; Eyers CE; Novotny CJ; Shokat KM; Kannan N; Eyers PA
    Biochem J; 2015 Apr; 467(1):47-62. PubMed ID: 25583260
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential inhibitor sensitivity between human kinases VRK1 and VRK2.
    Vázquez-Cedeira M; Barcia-Sanjurjo I; Sanz-García M; Barcia R; Lazo PA
    PLoS One; 2011; 6(8):e23235. PubMed ID: 21829721
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deletion of the Vaccinia Virus B1 Kinase Reveals Essential Functions of This Enzyme Complemented Partly by the Homologous Cellular Kinase VRK2.
    Olson AT; Rico AB; Wang Z; Delhon G; Wiebe MS
    J Virol; 2017 Aug; 91(15):. PubMed ID: 28515294
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NMR solution structure of human vaccinia-related kinase 1 (VRK1) reveals the C-terminal tail essential for its structural stability and autocatalytic activity.
    Shin J; Chakraborty G; Bharatham N; Kang C; Tochio N; Koshiba S; Kigawa T; Kim W; Kim KT; Yoon HS
    J Biol Chem; 2011 Jun; 286(25):22131-8. PubMed ID: 21543316
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Vaccinia Virus (VACV) B1 and Cellular VRK2 Kinases Promote VACV Replication Factory Formation through Phosphorylation-Dependent Inhibition of VACV B12.
    Rico AB; Wang Z; Olson AT; Linville AC; Bullard BL; Weaver EA; Jones C; Wiebe MS
    J Virol; 2019 Oct; 93(20):. PubMed ID: 31341052
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal structure of human vaccinia-related kinase 1 in complex with AMP-PNP, a non-hydrolyzable ATP analog.
    Ngow YS; Rajan S; Ye H; Yoon HS
    Protein Sci; 2019 Mar; 28(3):524-532. PubMed ID: 30461091
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dysregulation of Cellular VRK1, BAF, and Innate Immune Signaling by the Vaccinia Virus B12 Pseudokinase.
    Linville AC; Rico AB; Teague H; Binsted LE; Smith GL; Albarnaz JD; Wiebe MS
    J Virol; 2022 Jun; 96(11):e0039822. PubMed ID: 35543552
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tribbles-Related Protein Family Members as Regulators or Substrates of the Ubiquitin-Proteasome System in Cancer Development.
    Sakai S; Miyajima C; Uchida C; Itoh Y; Hayashi H; Inoue Y
    Curr Cancer Drug Targets; 2016; 16(2):147-56. PubMed ID: 26560117
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of three paralogous members of the Mammalian vaccinia related kinase family.
    Nichols RJ; Traktman P
    J Biol Chem; 2004 Feb; 279(9):7934-46. PubMed ID: 14645249
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Substrate profiling of human vaccinia-related kinases identifies coilin, a Cajal body nuclear protein, as a phosphorylation target with neurological implications.
    Sanz-García M; Vázquez-Cedeira M; Kellerman E; Renbaum P; Levy-Lahad E; Lazo PA
    J Proteomics; 2011 Dec; 75(2):548-60. PubMed ID: 21920476
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamical insights of Mnk2 kinase activation by phosphorylation to facilitate inhibitor discovery.
    Kumarasiri M; Teo T; Wang S
    Future Med Chem; 2015; 7(2):91-102. PubMed ID: 25685999
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Presumed pseudokinase VRK3 functions as a BAF kinase.
    Park CH; Ryu HG; Kim SH; Lee D; Song H; Kim KT
    Biochim Biophys Acta; 2015 Jul; 1853(7):1738-48. PubMed ID: 25899223
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sensitivity of the kinase activity of human vaccinia-related kinase proteins to toxic metals.
    Barcia-Sanjurjo I; Vázquez-Cedeira M; Barcia R; Lazo PA
    J Biol Inorg Chem; 2013 Apr; 18(4):473-82. PubMed ID: 23483238
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure of the pseudokinase VRK3 reveals a degraded catalytic site, a highly conserved kinase fold, and a putative regulatory binding site.
    Scheeff ED; Eswaran J; Bunkoczi G; Knapp S; Manning G
    Structure; 2009 Jan; 17(1):128-38. PubMed ID: 19141289
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural Basis of Inhibition of DCLK1 by Ruxolitinib.
    Jang DM; Lim HJ; Hahn H; Lee Y; Kim HK; Kim HS
    Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445192
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A historical overview of protein kinases and their targeted small molecule inhibitors.
    Roskoski R
    Pharmacol Res; 2015 Oct; 100():1-23. PubMed ID: 26207888
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probing the binding mechanism of Mnk inhibitors by docking and molecular dynamics simulations.
    Kannan S; Poulsen A; Yang HY; Ho M; Ang SH; Eldwin TS; Jeyaraj DA; Chennamaneni LR; Liu B; Hill J; Verma CS; Nacro K
    Biochemistry; 2015 Jan; 54(1):32-46. PubMed ID: 25431995
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.