BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 23082994)

  • 1. Site-specific noncovalent interaction of the biopolymer poly(ADP-ribose) with the Werner syndrome protein regulates protein functions.
    Popp O; Veith S; Fahrer J; Bohr VA; Bürkle A; Mangerich A
    ACS Chem Biol; 2013 Jan; 8(1):179-88. PubMed ID: 23082994
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential and Concordant Roles for Poly(ADP-Ribose) Polymerase 1 and Poly(ADP-Ribose) in Regulating WRN and RECQL5 Activities.
    Khadka P; Hsu JK; Veith S; Tadokoro T; Shamanna RA; Mangerich A; Croteau DL; Bohr VA
    Mol Cell Biol; 2015 Dec; 35(23):3974-89. PubMed ID: 26391948
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Poly(ADP-ribose) polymerase 1 regulates both the exonuclease and helicase activities of the Werner syndrome protein.
    von Kobbe C; Harrigan JA; Schreiber V; Stiegler P; Piotrowski J; Dawut L; Bohr VA
    Nucleic Acids Res; 2004; 32(13):4003-14. PubMed ID: 15292449
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Central role for the Werner syndrome protein/poly(ADP-ribose) polymerase 1 complex in the poly(ADP-ribosyl)ation pathway after DNA damage.
    von Kobbe C; Harrigan JA; May A; Opresko PL; Dawut L; Cheng WH; Bohr VA
    Mol Cell Biol; 2003 Dec; 23(23):8601-13. PubMed ID: 14612404
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sequence-specific processing of telomeric 3' overhangs by the Werner syndrome protein exonuclease activity.
    Li B; Reddy S; Comai L
    Aging (Albany NY); 2009 Mar; 1(3):289-302. PubMed ID: 20157518
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intrinsic ssDNA annealing activity in the C-terminal region of WRN.
    Muftuoglu M; Kulikowicz T; Beck G; Lee JW; Piotrowski J; Bohr VA
    Biochemistry; 2008 Sep; 47(39):10247-54. PubMed ID: 18771289
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DNA binding residues in the RQC domain of Werner protein are critical for its catalytic activities.
    Tadokoro T; Kulikowicz T; Dawut L; Croteau DL; Bohr VA
    Aging (Albany NY); 2012 Jun; 4(6):417-29. PubMed ID: 22713343
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DNA secondary structure of the released strand stimulates WRN helicase action on forked duplexes without coordinate action of WRN exonuclease.
    Ahn B; Bohr VA
    Biochem Biophys Res Commun; 2011 Aug; 411(4):684-9. PubMed ID: 21763283
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coordinate action of the helicase and 3' to 5' exonuclease of Werner syndrome protein.
    Opresko PL; Laine JP; Brosh RM; Seidman MM; Bohr VA
    J Biol Chem; 2001 Nov; 276(48):44677-87. PubMed ID: 11572872
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal structure of the HRDC domain of human Werner syndrome protein, WRN.
    Kitano K; Yoshihara N; Hakoshima T
    J Biol Chem; 2007 Jan; 282(4):2717-28. PubMed ID: 17148451
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Length-dependent degradation of single-stranded 3' ends by the Werner syndrome protein (WRN): implications for spatial orientation and coordinated 3' to 5' movement of its ATPase/helicase and exonuclease domains.
    Machwe A; Xiao L; Orren DK
    BMC Mol Biol; 2006 Feb; 7():6. PubMed ID: 16503984
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Roles of the Werner syndrome RecQ helicase in DNA replication.
    Sidorova JM
    DNA Repair (Amst); 2008 Nov; 7(11):1776-86. PubMed ID: 18722555
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional deficit associated with a missense Werner syndrome mutation.
    Tadokoro T; Rybanska-Spaeder I; Kulikowicz T; Dawut L; Oshima J; Croteau DL; Bohr VA
    DNA Repair (Amst); 2013 Jun; 12(6):414-21. PubMed ID: 23583337
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metal-catalyzed oxidation of the Werner syndrome protein causes loss of catalytic activities and impaired protein-protein interactions.
    Harrigan JA; Piotrowski J; Di Noto L; Levine RL; Bohr VA
    J Biol Chem; 2007 Dec; 282(50):36403-11. PubMed ID: 17911100
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification and biochemical characterization of a Werner's syndrome protein complex with Ku70/80 and poly(ADP-ribose) polymerase-1.
    Li B; Navarro S; Kasahara N; Comai L
    J Biol Chem; 2004 Apr; 279(14):13659-67. PubMed ID: 14734561
    [TBL] [Abstract][Full Text] [Related]  

  • 16. WRN helicase defective in the premature aging disorder Werner syndrome genetically interacts with topoisomerase 3 and restores the top3 slow growth phenotype of sgs1 top3.
    Aggarwal M; Brosh RM
    Aging (Albany NY); 2009 Feb; 1(2):219-33. PubMed ID: 20157511
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural basis for DNA strand separation by the unconventional winged-helix domain of RecQ helicase WRN.
    Kitano K; Kim SY; Hakoshima T
    Structure; 2010 Feb; 18(2):177-87. PubMed ID: 20159463
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative analysis of WRN exonuclease activity by isotope dilution mass spectrometry.
    Mangerich A; Veith S; Popp O; Fahrer J; Martello R; Bohr VA; Bürkle A
    Mech Ageing Dev; 2012 Aug; 133(8):575-9. PubMed ID: 22766507
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Werner syndrome exonuclease facilitates DNA degradation and high fidelity DNA polymerization by human DNA polymerase δ.
    Kamath-Loeb AS; Shen JC; Schmitt MW; Loeb LA
    J Biol Chem; 2012 Apr; 287(15):12480-90. PubMed ID: 22351772
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nuclear DNA helicase II (RNA helicase A) interacts with Werner syndrome helicase and stimulates its exonuclease activity.
    Friedemann J; Grosse F; Zhang S
    J Biol Chem; 2005 Sep; 280(35):31303-13. PubMed ID: 15995249
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.