These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 23083115)

  • 21. In situ fibril stretch and sliding is location-dependent in mouse supraspinatus tendons.
    Connizzo BK; Sarver JJ; Han L; Soslowsky LJ
    J Biomech; 2014 Dec; 47(16):3794-8. PubMed ID: 25468300
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The predominant role of collagen in the nucleation, growth, structure and orientation of bone apatite.
    Wang Y; Azaïs T; Robin M; Vallée A; Catania C; Legriel P; Pehau-Arnaudet G; Babonneau F; Giraud-Guille MM; Nassif N
    Nat Mater; 2012 Jul; 11(8):724-33. PubMed ID: 22751179
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ultrastructural immunolocalization of cartilage oligomeric matrix protein (COMP) in relation to collagen fibrils in the equine tendon.
    Södersten F; Ekman S; Eloranta ML; Heinegård D; Dudhia J; Hultenby K
    Matrix Biol; 2005 Aug; 24(5):376-85. PubMed ID: 16005620
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fibrous long spacing type collagen fibrils have a hierarchical internal structure.
    Wen CK; Goh MC
    Proteins; 2006 Jul; 64(1):227-33. PubMed ID: 16609970
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ultrastructure of the collagen fibril. II. Evidence of the spiral organization of the fibril.
    Petkov R
    Anat Anz; 1978; 144(5):485-501. PubMed ID: 747226
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nanostructure and mechanics of mummified type I collagen from the 5300-year-old Tyrolean Iceman.
    Janko M; Zink A; Gigler AM; Heckl WM; Stark RW
    Proc Biol Sci; 2010 Aug; 277(1692):2301-9. PubMed ID: 20356896
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mechanical response of individual collagen fibrils in loaded tendon as measured by atomic force microscopy.
    Rigozzi S; Stemmer A; Müller R; Snedeker JG
    J Struct Biol; 2011 Oct; 176(1):9-15. PubMed ID: 21771659
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A new longitudinal variation in the structure of collagen fibrils and its relationship to locations of mechanical damage susceptibility.
    Baldwin SJ; Sampson J; Peacock CJ; Martin ML; Veres SP; Lee JM; Kreplak L
    J Mech Behav Biomed Mater; 2020 Oct; 110():103849. PubMed ID: 32501220
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tendon glycosaminoglycan proteoglycan sidechains promote collagen fibril sliding-AFM observations at the nanoscale.
    Rigozzi S; Müller R; Stemmer A; Snedeker JG
    J Biomech; 2013 Feb; 46(4):813-8. PubMed ID: 23219277
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tendon and ligament fibrillar crimps give rise to left-handed helices of collagen fibrils in both planar and helical crimps.
    Franchi M; Ottani V; Stagni R; Ruggeri A
    J Anat; 2010 Mar; 216(3):301-9. PubMed ID: 20070421
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Influence of saline and pH on collagen type I fibrillogenesis in vitro: fibril polymorphism and colloidal gold labelling.
    Harris JR; Reiber A
    Micron; 2007; 38(5):513-21. PubMed ID: 17045806
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nanomechanical mapping of hydrated rat tail tendon collagen I fibrils.
    Baldwin SJ; Quigley AS; Clegg C; Kreplak L
    Biophys J; 2014 Oct; 107(8):1794-1801. PubMed ID: 25418160
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evidence that collagen fibrils in tendons are inhomogeneously structured in a tubelike manner.
    Gutsmann T; Fantner GE; Venturoni M; Ekani-Nkodo A; Thompson JB; Kindt JH; Morse DE; Fygenson DK; Hansma PK
    Biophys J; 2003 Apr; 84(4):2593-8. PubMed ID: 12668467
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nanoscale morphology of Type I collagen is altered in the Brtl mouse model of Osteogenesis Imperfecta.
    Wallace JM; Orr BG; Marini JC; Holl MM
    J Struct Biol; 2011 Jan; 173(1):146-52. PubMed ID: 20696252
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The loci of mineral in turkey leg tendon as seen by atomic force microscope and electron microscopy.
    Lees S; Prostak KS; Ingle VK; Kjoller K
    Calcif Tissue Int; 1994 Sep; 55(3):180-9. PubMed ID: 7987731
    [TBL] [Abstract][Full Text] [Related]  

  • 36. β-Aminopropionitrile-Induced Reduction in Enzymatic Crosslinking Causes In Vitro Changes in Collagen Morphology and Molecular Composition.
    Canelón SP; Wallace JM
    PLoS One; 2016; 11(11):e0166392. PubMed ID: 27829073
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Collagen fibrillogenesis in situ: fibril segments become long fibrils as the developing tendon matures.
    Birk DE; Zycband EI; Woodruff S; Winkelmann DA; Trelstad RL
    Dev Dyn; 1997 Mar; 208(3):291-8. PubMed ID: 9056634
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Extracellular compartments in tendon morphogenesis: collagen fibril, bundle, and macroaggregate formation.
    Birk DE; Trelstad RL
    J Cell Biol; 1986 Jul; 103(1):231-40. PubMed ID: 3722266
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Different crimp patterns in collagen fibrils relate to the subfibrillar arrangement.
    Franchi M; Raspanti M; Dell'Orbo C; Quaranta M; De Pasquale V; Ottani V; Ruggeri A
    Connect Tissue Res; 2008; 49(2):85-91. PubMed ID: 18382894
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Collagenous fibril texture of the gliding zone of the human tibialis posterior tendon.
    Petersen W; Hohmann G
    Foot Ankle Int; 2001 Feb; 22(2):126-32. PubMed ID: 11249222
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.