These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 23083145)

  • 1. Comparison of two generation-recombination terms in the Poisson-Nernst-Planck model.
    Lelidis I; Barbero G; Sfarna A
    J Chem Phys; 2012 Oct; 137(15):154104. PubMed ID: 23083145
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrical impedance of an electrolytic cell in the presence of generation and recombination of ions.
    Derfel G; Lenzi EK; Yednak CR; Barbero G
    J Chem Phys; 2010 Jun; 132(22):224901. PubMed ID: 20550413
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Similarities and differences among the models proposed for real electrodes in the Poisson-Nernst-Planck theory.
    Barbero G; Scalerandi M
    J Chem Phys; 2012 Feb; 136(8):084705. PubMed ID: 22380057
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrical response of a medium containing dissociable impurities.
    Barbero G; Lelidis I
    J Phys Chem B; 2011 Apr; 115(13):3496-504. PubMed ID: 21410180
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Independence of the effective dielectric constant of an electrolytic solution on the ionic distribution in the linear Poisson-Nernst-Planck model.
    Alexe-Ionescu AL; Barbero G; Lelidis I
    J Chem Phys; 2014 Aug; 141(8):084505. PubMed ID: 25173019
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the equivalence between specific adsorption and kinetic equation descriptions of the admittance response in electrolytic cells.
    Evangelista LR; Lenzi EK; Barbero G; Macdonald JR
    J Chem Phys; 2013 Mar; 138(11):114702. PubMed ID: 23534648
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theoretical interpretation of Warburg's impedance in unsupported electrolytic cells.
    Barbero G
    Phys Chem Chem Phys; 2017 Dec; 19(48):32575-32579. PubMed ID: 29189837
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Complex dielectric constant of a nematic liquid crystal containing two types of ions: limit of validity of the superposition principle.
    Alexe-Ionescu AL; Barbero G; Lelidis I
    J Phys Chem B; 2009 Nov; 113(44):14747-53. PubMed ID: 19827753
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of the Nernst-Planck model and the Poisson-Boltzmann model for electroosmotic flows in microchannels.
    Park HM; Lee JS; Kim TW
    J Colloid Interface Sci; 2007 Nov; 315(2):731-9. PubMed ID: 17681522
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transport process of ions in insulating media in the hyperbolic diffusion regime.
    Barbero G; Macdonald JR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 May; 81(5 Pt 1):051503. PubMed ID: 20866231
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three to six ambiguities in immittance spectroscopy data fitting.
    Macdonald JR
    J Phys Condens Matter; 2012 May; 24(17):175004. PubMed ID: 22481085
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of Nernst-Planck and reaction rate models for multiply occupied channels.
    Levitt DG
    Biophys J; 1982 Mar; 37(3):575-87. PubMed ID: 6280783
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of various boundary conditions on the response of Poisson-Nernst-Planck impedance spectroscopy analysis models and comparison with a continuous-time random-walk model.
    Macdonald JR
    J Phys Chem A; 2011 Nov; 115(46):13370-80. PubMed ID: 21923111
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electric impedance of a sample of dielectric liquid containing two groups of ions limited by ohmic electrodes: a study with pure water.
    Duarte AR; Batalioto F; Barbero G; Neto AM
    J Phys Chem B; 2013 Mar; 117(10):2985-91. PubMed ID: 23421408
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Membrane transport of several ions during peritoneal dialysis: mathematical modeling.
    Galach M; Waniewski J
    Artif Organs; 2012 Sep; 36(9):E163-78. PubMed ID: 22882513
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence of the ambipolar diffusion in the impedance spectroscopy of an electrolytic cell.
    Barbero G; Lelidis I
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Nov; 76(5 Pt 1):051501. PubMed ID: 18233662
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Decoupling of the nernst-planck and poisson equations. Application to a membrane system at overlimiting currents.
    Urtenov MA; Kirillova EV; Seidova NM; Nikonenko VV
    J Phys Chem B; 2007 Dec; 111(51):14208-22. PubMed ID: 18052144
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrical conductivity of aqueous salt-free concentrated suspensions. Effects of water dissociation and CO2 contamination.
    Carrique F; Ruiz-Reina E
    J Phys Chem B; 2009 Jul; 113(30):10261-70. PubMed ID: 19580303
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Time-dependent phenomena in the potential response of ion-selective electrodes treated by the Nernst-Planck-Poisson model. 1. Intramembrane processes and selectivity.
    Lingenfelter P; Bedlechowicz-Sliwakowska I; Sokalski T; Maj-Zurawska M; Lewenstam A
    Anal Chem; 2006 Oct; 78(19):6783-91. PubMed ID: 17007497
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of the displacement current on Warburg-type behavior.
    Lelidis I; Barbero G
    Phys Rev E; 2017 May; 95(5-1):052604. PubMed ID: 28618597
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.