These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 23083150)

  • 1. Effective diffusivity through arrays of obstacles under zero-mean periodic driving forces.
    Alvarez-Ramirez J; Dagdug L; Valdes-Parada FJ
    J Chem Phys; 2012 Oct; 137(15):154109. PubMed ID: 23083150
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Driven Brownian transport through arrays of symmetric obstacles.
    Ghosh PK; Hänggi P; Marchesoni F; Martens S; Nori F; Schimansky-Geier L; Schmid G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 1):011101. PubMed ID: 22400506
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced diffusion with abnormal temperature dependence in underdamped space-periodic systems subject to time-periodic driving.
    Marchenko IG; Marchenko II; Zhiglo AV
    Phys Rev E; 2018 Jan; 97(1-1):012121. PubMed ID: 29448473
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced diffusion in conic channels by means of geometric stochastic resonance.
    Vazquez MV; Valdes-Parada FJ; Dagdug L; Alvarez-Ramirez J
    J Chem Phys; 2011 Nov; 135(17):174102. PubMed ID: 22070287
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Entropic particle transport in periodic channels.
    Burada PS; Schmid G; Talkner P; Hänggi P; Reguera D; Rubí JM
    Biosystems; 2008; 93(1-2):16-22. PubMed ID: 18462863
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diffusion in one-dimensional channels with zero-mean time-periodic tilting forces.
    Muñoz-Gutiérrez E; Alvarez-Ramirez J; Dagdug L; Espinosa-Paredes G
    J Chem Phys; 2012 Mar; 136(11):114103. PubMed ID: 22443745
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Driven transport of active particles through arrays of symmetric obstacles.
    Nayak S; Das S; Bag P; Debnath T; Ghosh PK
    J Chem Phys; 2023 Oct; 159(16):. PubMed ID: 37877479
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Collective transport in locally asymmetric periodic structures.
    Derenyi I; Tegzes P; Vicsek T
    Chaos; 1998 Sep; 8(3):657-664. PubMed ID: 12779770
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A volume averaging approach for asymmetric diffusion in porous media.
    Valdés-Parada FJ; Alvarez-Ramírez J
    J Chem Phys; 2011 May; 134(20):204709. PubMed ID: 21639469
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transport of overdamped Brownian particles in a two-dimensional tube: nonadiabatic regime.
    Ai BQ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jul; 80(1 Pt 1):011113. PubMed ID: 19658659
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrodynamically enforced entropic Brownian pump.
    Ai BQ; He YF; Li FG; Zhong WR
    J Chem Phys; 2013 Apr; 138(15):154107. PubMed ID: 23614412
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Noise-assisted transport on symmetric periodic substrates.
    Borromeo M; Marchesoni F
    Chaos; 2005 Jun; 15(2):26110. PubMed ID: 16035912
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transport of finite size particles in confined narrow channels: diffusion, coherence, and particle separation.
    Ai BQ; Wu JC
    J Chem Phys; 2013 Jul; 139(3):034114. PubMed ID: 23883017
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quasideterministic transport of Brownian particles in an oscillating periodic potential.
    Romanczuk P; Müller F; Schimansky-Geier L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jun; 81(6 Pt 1):061120. PubMed ID: 20866391
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rectified brownian transport in corrugated channels: Fractional brownian motion and Lévy flights.
    Ai BQ; Shao ZG; Zhong WR
    J Chem Phys; 2012 Nov; 137(17):174101. PubMed ID: 23145711
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancement of the longitudinal transport by a weakly transversal drive.
    He Y; Ai BQ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Feb; 81(2 Pt 1):021110. PubMed ID: 20365533
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Particle separation induced by triangle obstacles in a straight channel.
    Wu JC; Dong TW; Jiang GW; An M; Ai BQ
    J Chem Phys; 2020 Jan; 152(3):034901. PubMed ID: 31968953
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Current in a three-dimensional periodic tube with unbiased forces.
    Ai BQ; Liu LG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Nov; 74(5 Pt 1):051114. PubMed ID: 17279884
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transport of particles driven by the traveling obstacle arrays.
    Zhu WJ; Zhong WR; Xiong JW; Ai BQ
    J Chem Phys; 2018 Nov; 149(17):174906. PubMed ID: 30409003
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Separation of suspended particles by arrays of obstacles in microfluidic devices.
    Li Z; Drazer G
    Phys Rev Lett; 2007 Feb; 98(5):050602. PubMed ID: 17358839
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.