These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

309 related articles for article (PubMed ID: 23083151)

  • 21. Band Gap of 3D Metal Oxides and Quasi-2D Materials from Hybrid Density Functional Theory: Are Dielectric-Dependent Functionals Superior?
    Das T; Di Liberto G; Tosoni S; Pacchioni G
    J Chem Theory Comput; 2019 Nov; 15(11):6294-6312. PubMed ID: 31614082
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Accurate Prediction of Band Structure of FeS
    Zhang MY; Jiang H
    Front Chem; 2021; 9():747972. PubMed ID: 34650959
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Defect formation energies without the band-gap problem: combining density-functional theory and the GW approach for the silicon self-interstitial.
    Rinke P; Janotti A; Scheffler M; Van de Walle CG
    Phys Rev Lett; 2009 Jan; 102(2):026402. PubMed ID: 19257298
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Magnetic force theory combined with quasi-particle self-consistent GW method.
    Yoon H; Jang SW; Sim JH; Kotani T; Han MJ
    J Phys Condens Matter; 2019 Oct; 31(40):405503. PubMed ID: 31220821
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ionization energy of atoms obtained from GW self-energy or from random phase approximation total energies.
    Bruneval F
    J Chem Phys; 2012 May; 136(19):194107. PubMed ID: 22612080
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Quasiparticle Self-Consistent
    Friedrich C; Blügel S; Nabok D
    Nanomaterials (Basel); 2022 Oct; 12(20):. PubMed ID: 36296848
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparing LDA-1/2, HSE03, HSE06 and G₀W₀ approaches for band gap calculations of alloys.
    Pela RR; Marques M; Teles LK
    J Phys Condens Matter; 2015 Dec; 27(50):505502. PubMed ID: 26609566
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quasiparticle semiconductor band structures including spin-orbit interactions.
    Malone BD; Cohen ML
    J Phys Condens Matter; 2013 Mar; 25(10):105503. PubMed ID: 23396813
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Energy band gaps and lattice parameters evaluated with the Heyd-Scuseria-Ernzerhof screened hybrid functional.
    Heyd J; Peralta JE; Scuseria GE; Martin RL
    J Chem Phys; 2005 Nov; 123(17):174101. PubMed ID: 16375511
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Insights and challenges of applying the GW method to transition metal oxides.
    Samsonidze G; Park CH; Kozinsky B
    J Phys Condens Matter; 2014 Nov; 26(47):475501. PubMed ID: 25351575
    [TBL] [Abstract][Full Text] [Related]  

  • 31. All-electron CI calculations of 3d transition-metal L(2,3) XANES using zeroth-order regular approximation for relativistic effects.
    Kumagai Y; Ikeno H; Tanaka I
    J Phys Condens Matter; 2009 Mar; 21(10):104209. PubMed ID: 21817429
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Electronic entanglement in late transition metal oxides.
    Thunström P; Di Marco I; Eriksson O
    Phys Rev Lett; 2012 Nov; 109(18):186401. PubMed ID: 23215301
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Benchmarking the GW Approximation and Bethe-Salpeter Equation for Groups IB and IIB Atoms and Monoxides.
    Hung L; Bruneval F; Baishya K; Öğüt S
    J Chem Theory Comput; 2017 May; 13(5):2135-2146. PubMed ID: 28387124
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Photoelectron spectra of early 3d-transition metal dioxide molecular anions from GW calculations.
    Rezaei M; Öğüt S
    J Chem Phys; 2021 Mar; 154(9):094307. PubMed ID: 33685151
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Self-interaction correction in multiple scattering theory: application to transition metal oxides.
    Däne M; Lüders M; Ernst A; Ködderitzsch D; Temmerman WM; Szotek Z; Hergert W
    J Phys Condens Matter; 2009 Jan; 21(4):045604. PubMed ID: 21715818
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hybrid functionals for solids with an optimized Hartree-Fock mixing parameter.
    Koller D; Blaha P; Tran F
    J Phys Condens Matter; 2013 Oct; 25(43):435503. PubMed ID: 24107516
    [TBL] [Abstract][Full Text] [Related]  

  • 37. First-principles determination of defect energy levels through hybrid density functionals and GW.
    Chen W; Pasquarello A
    J Phys Condens Matter; 2015 Apr; 27(13):133202. PubMed ID: 25744104
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quasiparticle self-consistent GW theory.
    van Schilfgaarde M; Kotani T; Faleev S
    Phys Rev Lett; 2006 Jun; 96(22):226402. PubMed ID: 16803332
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Quasiparticle energies and band gaps in graphene nanoribbons.
    Yang L; Park CH; Son YW; Cohen ML; Louie SG
    Phys Rev Lett; 2007 Nov; 99(18):186801. PubMed ID: 17995426
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Quasiparticle energy spectra of alkali-metal clusters: all-electron first-principles calculations.
    Noguchi Y; Ishii S; Ohno K; Sasaki T
    J Chem Phys; 2008 Sep; 129(10):104104. PubMed ID: 19044905
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.