These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 23083187)

  • 1. Nucleation of colloids and macromolecules in a finite volume.
    Lutsko JF
    J Chem Phys; 2012 Oct; 137(15):154903. PubMed ID: 23083187
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Communication: A dynamical theory of homogeneous nucleation for colloids and macromolecules.
    Lutsko JF
    J Chem Phys; 2011 Oct; 135(16):161101. PubMed ID: 22047221
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A dynamical theory of nucleation for colloids and macromolecules.
    Lutsko JF
    J Chem Phys; 2012 Jan; 136(3):034509. PubMed ID: 22280769
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nucleation of colloids and macromolecules: does the nucleation pathway matter?
    Lutsko JF
    J Chem Phys; 2012 Apr; 136(13):134502. PubMed ID: 22482567
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Classical nucleation theory from a dynamical approach to nucleation.
    Lutsko JF; Durán-Olivencia MA
    J Chem Phys; 2013 Jun; 138(24):244908. PubMed ID: 23822275
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low-density/high-density liquid phase transition for model globular proteins.
    Grosfils P; Lutsko JF
    Langmuir; 2010 Jun; 26(11):8510-6. PubMed ID: 20222718
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An aggregation-volume-bias Monte Carlo investigation on the condensation of a Lennard-Jones vapor below the triple point and crystal nucleation in cluster systems: an in-depth evaluation of the classical nucleation theory.
    Chen B; Kim H; Keasler SJ; Nellas RB
    J Phys Chem B; 2008 Apr; 112(13):4067-78. PubMed ID: 18335920
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mean-field kinetic nucleation theory.
    Kalikmanov VI
    J Chem Phys; 2006 Mar; 124(12):124505. PubMed ID: 16599695
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nucleation of crystals from solution: classical and two-step models.
    Erdemir D; Lee AY; Myerson AS
    Acc Chem Res; 2009 May; 42(5):621-9. PubMed ID: 19402623
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent developments in the kinetic theory of nucleation.
    Ruckenstein E; Djikaev YS
    Adv Colloid Interface Sci; 2005 Dec; 118(1-3):51-72. PubMed ID: 16137628
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mesoscopic nucleation theory for confined systems: a one-parameter model.
    Durán-Olivencia MA; Lutsko JF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):022402. PubMed ID: 25768513
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Statistico-probabilistic approach to taking account of the vapor depletion in the kinetics of homogeneous nucleation: a free-molecular regime of droplet growth.
    Grinin AP; Kuni FM; Djikaev YS
    J Chem Phys; 2004 Jan; 120(4):1846-54. PubMed ID: 15268317
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nucleation versus spinodal decomposition in phase formation processes in multicomponent solutions.
    Schmelzer JW; Abyzov AS; Möller J
    J Chem Phys; 2004 Oct; 121(14):6900-17. PubMed ID: 15473749
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A mathematical model of crystallization in an emulsion.
    Feltham DL; Garside J
    J Chem Phys; 2005 May; 122(17):174910. PubMed ID: 15910072
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Classical density functional theory: an ideal tool to study heterogeneous crystal nucleation.
    Kahl G; Löwen H
    J Phys Condens Matter; 2009 Nov; 21(46):464101. PubMed ID: 21715865
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rethinking the application of the first nucleation theorem to particle formation.
    Vehkamäki H; McGrath MJ; Kurtén T; Julin J; Lehtinen KE; Kulmala M
    J Chem Phys; 2012 Mar; 136(9):094107. PubMed ID: 22401429
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Homogeneous nucleation and droplet growth in supersaturated argon vapor: the cryogenic nucleation pulse chamber.
    Fladerer A; Strey R
    J Chem Phys; 2006 Apr; 124(16):164710. PubMed ID: 16674160
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermodynamic analysis of nucleation in confined space: generalized Gibbs approach.
    Schmelzer JW; Abyzov AS
    J Chem Phys; 2011 Feb; 134(5):054511. PubMed ID: 21303142
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Steady-state homogeneous nucleation and growth of water droplets: extended numerical treatment.
    Mokshin AV; Galimzyanov BN
    J Phys Chem B; 2012 Oct; 116(39):11959-67. PubMed ID: 22957738
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Homogeneous nucleation: classical formulas as asymptotic limits of the Cahn-Hilliard approach.
    Parra IE; Cordero-Gracia M; Gómez M
    J Chem Phys; 2007 Feb; 126(5):054512. PubMed ID: 17302490
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.