These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

303 related articles for article (PubMed ID: 23083231)

  • 41. Controlling the quantum dynamics of a mesoscopic spin bath in diamond.
    de Lange G; van der Sar T; Blok M; Wang ZH; Dobrovitski V; Hanson R
    Sci Rep; 2012; 2():382. PubMed ID: 22536480
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Nuclear magnetic resonance proton dipolar order relaxation in thermotropic liquid crystals: a quantum theoretical approach.
    Zamar RC; Mensio O
    J Chem Phys; 2004 Dec; 121(23):11927-41. PubMed ID: 15634155
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Mesoscopic systems: classical irreversibility and quantum coherence.
    Barbara B
    Philos Trans A Math Phys Eng Sci; 2012 Sep; 370(1975):4487-516. PubMed ID: 22908339
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Protection of centre spin coherence by dynamic nuclear spin polarization in diamond.
    Liu GQ; Jiang QQ; Chang YC; Liu DQ; Li WX; Gu CZ; Po HC; Zhang WX; Zhao N; Pan XY
    Nanoscale; 2014 Sep; 6(17):10134-9. PubMed ID: 25042514
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effective-mode representation of non-Markovian dynamics: a hierarchical approximation of the spectral density. II. Application to environment-induced nonadiabatic dynamics.
    Hughes KH; Christ CD; Burghardt I
    J Chem Phys; 2009 Sep; 131(12):124108. PubMed ID: 19791853
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A semiclassical generalized quantum master equation for an arbitrary system-bath coupling.
    Shi Q; Geva E
    J Chem Phys; 2004 Jun; 120(22):10647-58. PubMed ID: 15268091
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Quantum dot spin coherence governed by a strained nuclear environment.
    Stockill R; Le Gall C; Matthiesen C; Huthmacher L; Clarke E; Hugues M; Atatüre M
    Nat Commun; 2016 Sep; 7():12745. PubMed ID: 27615704
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Quantitative Structure-Based Prediction of Electron Spin Decoherence in Organic Radicals.
    Canarie ER; Jahn SM; Stoll S
    J Phys Chem Lett; 2020 May; 11(9):3396-3400. PubMed ID: 32282218
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Many-Body Dynamics and Decoherence of the
    Zhou X; Wan QK; Wang XH
    Entropy (Basel); 2019 Dec; 22(1):. PubMed ID: 33285798
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Detection and control of individual nuclear spins using a weakly coupled electron spin.
    Taminiau TH; Wagenaar JJ; van der Sar T; Jelezko F; Dobrovitski VV; Hanson R
    Phys Rev Lett; 2012 Sep; 109(13):137602. PubMed ID: 23030119
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Markovian approximation in the relaxation of open quantum systems.
    Cheng YC; Silbey RJ
    J Phys Chem B; 2005 Nov; 109(45):21399-405. PubMed ID: 16853776
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Universal pulse sequence to minimize spin dephasing in the central spin decoherence problem.
    Lee B; Witzel WM; Das Sarma S
    Phys Rev Lett; 2008 Apr; 100(16):160505. PubMed ID: 18518177
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Anomalous decoherence effect in a quantum bath.
    Zhao N; Wang ZY; Liu RB
    Phys Rev Lett; 2011 May; 106(21):217205. PubMed ID: 21699338
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Phonon-dressed Mollow triplet in the regime of cavity quantum electrodynamics: excitation-induced dephasing and nonperturbative cavity feeding effects.
    Roy C; Hughes S
    Phys Rev Lett; 2011 Jun; 106(24):247403. PubMed ID: 21770598
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Quadrupolar and anisotropy effects on dephasing in two-electron spin qubits in GaAs.
    Botzem T; McNeil RP; Mol JM; Schuh D; Bougeard D; Bluhm H
    Nat Commun; 2016 Apr; 7():11170. PubMed ID: 27079269
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Global and local relaxation of a spin chain under exact Schrödinger and master-equation dynamics.
    Henrich MJ; Michel M; Hartmann M; Mahler G; Gemmer J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Aug; 72(2 Pt 2):026104. PubMed ID: 16196641
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Multiple-pulse coherence enhancement of solid state spin qubits.
    Witzel WM; Das Sarma S
    Phys Rev Lett; 2007 Feb; 98(7):077601. PubMed ID: 17359059
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Fundamental Limits to Coherent Photon Generation with Solid-State Atomlike Transitions.
    Koong ZX; Scerri D; Rambach M; Santana TS; Park SI; Song JD; Gauger EM; Gerardot BD
    Phys Rev Lett; 2019 Oct; 123(16):167402. PubMed ID: 31702372
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Enhancement of electron spin coherence by optical preparation of nuclear spins.
    Stepanenko D; Burkard G; Giedke G; Imamoglu A
    Phys Rev Lett; 2006 Apr; 96(13):136401. PubMed ID: 16712008
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Influence of electronic spin and spin-orbit coupling on decoherence in mononuclear transition metal complexes.
    Graham MJ; Zadrozny JM; Shiddiq M; Anderson JS; Fataftah MS; Hill S; Freedman DE
    J Am Chem Soc; 2014 May; 136(21):7623-6. PubMed ID: 24836983
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.